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ABSTRACT OF DISSERTATION 
 
 
 
 

VALIDATION OF COMPUTATIONAL FLUID DYNAMIC SIMULATIONS  
OF MEMBRANE ARTIFICIAL LUNGS WITH X-RAY IMAGING 

 
 The functional performance of membrane oxygenators is directly related to the perfusion 
dynamics of blood flow through the fiber bundle.  Non-uniform flow and design characteristics 
can limit gas exchange efficiency and influence susceptibility of thrombus development in the 
fiber membrane.  Computational fluid dynamics (CFD) is a powerful tool for predicting 
properties of the flow field based on prescribed geometrical domains and boundary conditions.  
Validation of numerical results in membrane oxygenators has been predominantly based on 
experimental pressure measurements with little emphasis placed on confirmation of the velocity 
fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. 
 A novel approach was developed using biplane X-ray digital subtraction angiography to 
visualize flow through a commercial membrane artificial lung at 1–4.5 L/min.  Permeability 
based on the coefficients of the Ergun equation, α and β, were experimentally determined to be 
180 and 2.4, respectively, and the equivalent spherical diameter was shown to be approximately 
equal to the outer fiber diameter.  For all flow rates tested, biplane image projections revealed 
non-uniform radial perfusion through the annular fiber bundle, yet without flow bias due to the 
axisymmetric position of the outlet.  At 1 L/min, approximately 78.2% of the outward velocity 
component was in the radial (horizontal) plane verses 92.0% at 4.5 L/min.  The CFD studies were 
unable to predict the non-radial component of the outward perfusion. 
 Two-dimensional velocity fields were generated from the radiographs using a cross-
correlation tracking algorithm and compared with analogous image planes from the CFD 
simulations.  Velocities in the non-porous regions differed by an average of 11% versus the 
experimental values, but simulated velocities in the fiber bundle were on average 44% lower than 
experimental.  A corrective factor reduced the average error differences in the porous medium to 
6%.  Finally, biplane image pairs were reconstructed to show 3-D transient perfusion through the 
device. 
 The methods developed from this research provide tools for more accurate assessments of 
fluid flow through membrane oxygenators.  By identifying non-invasive techniques to allow 
direct analysis of numerical and experimental velocity fields, researchers can better evaluate 
device performance of new prototype designs. 
 
 
Keywords: Artificial Lung, X-ray Angiography, Computational Fluid Dynamics, Porous Media, 
Experimental Validation Methods 
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1. INTRODUCTION 
 
 
 
 
 
 
 
1.1. Statement of Contribution 

It is the purpose of this dissertation to identify a method for obtaining experimental 

perfusion data of blood flow through a membrane artificial lung in order to verify the accuracy of 

numerical models.  A novel approach was developed using X-ray angiography to visualize flow 

through a commercial membrane oxygenator with real-time, high spatio-temporal resolution.  

Two-dimensional velocity fields in the fiber bundle were generated from a pattern-searching 

tracking algorithm, allowing evaluation of the values obtained from numerical simulations. 

Permeability through the fiber bundle was compared with empirical relationships of flow 

through porous media, and the results were directly applied to formulations in the macroscopic 

computational fluid dynamic (CFD) analysis of blood flow through membrane artificial lungs.  

With the insight gained from the experimental measurements, a correction factor was defined 

which improved the post-processing results of the CFD models.  In addition, a new 3-D 

reconstruction technique improved clarity of the transient fiber bundle perfusion, which is useful 

for assessing uniformity of the flow distribution. 

The results of this research show that conventional methods for modeling permeability 

through fiber membranes greatly under-predict the true physical velocity of the blood flow, and 

emphasize the need for experimental validation of CFD simulations through porous media.  The 

methods developed herein will provide tools for more accurate assessments of fluid flow through 

membrane oxygenators.  By identifying non-invasive techniques to allow direct analysis of 

numerical and experimental velocity fields, researchers can better evaluate device performance of 

new prototype designs, which may improve the outcome from extended use of membrane 

oxygenators. 
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1.2. Structure of Dissertation 

 The contents of this dissertation are partitioned into chapters according to the traditional 

format: Background [ch. 2]; Methods [ch. 3–4]; Results [ch. 5–6]; Discussion [ch. 7]; and 

Conclusions [ch. 8].  Each chapter is further divided into subsections (§) for clarity, while most 

sections and major themes are followed by a brief discussion to revisit applications, limitations, 

and concepts from the preceding text.  Abbreviations and notations are defined when initially 

presented and are available for easy reference in the Appendix section at the end of the 

dissertation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Cameron C. Jones 2012  



www.manaraa.com
3 

 

2. BACKGROUND AND LITERATURE REVIEW 
 
 
 
 
 
 
 
2.1. Extracorporeal Membrane Oxygenation 

Extracorporeal membrane oxygenation (ECMO) therapy can provide prolonged 

functional support for patients with severe cardiac and/or pulmonary failure.  Effectively a 

modified heart-lung machine used in cardiopulmonary bypass (CPB) procedures, the principles 

behind ECMO have been used in applications of whole-body hyperthermia1, CO2 removal2,3, and 

total artificial lungs.4  Though the applications of extracorporeal circulation are widespread, the 

focus of this research is on long-term respiratory support. 

 

2.1.1. Respiratory Failure 

Chronic respiratory diseases are the fourth leading cause of death in the United States and 

include conditions such as chronic obstructed pulmonary disease (COPD), emphysema, and other 

lower respiratory diseases.5  While lung transplantation is the most effective treatment for end-

stage pulmonary diseases, there are currently over 1700 patients on the waiting list, with nearly 

18% wait-list mortality.6,7  The demand for long-term pulmonary support exists also for patients 

with reversible respiratory diseases such as pneumonia and acute respiratory distress syndrome 

(ARDS). 

 

2.1.2. Long-Term Pulmonary Support 

 Patients requiring prolonged, but temporary, respiratory support are most often treated 

with mechanical ventilation, among other therapies such as inhaled nitric oxide, surfactant, and 

prone positioning.8  But progressive mechanical ventilation can cause additional lung injury 



www.manaraa.com
4 

 

(volutrauma), infectious complications from long-term tracheal access, and only allows partial 

lung support—limited by the gas exchange capabilities of the remaining lung parenchyma.9,10 

 In cases of severe, acute respiratory failure (such as ARDS), ECMO may be used to 

provide temporary support (days–weeks) for lung recovery, while avoiding the potential for 

secondary injury resulting from mechanical ventilation.  Unfortunately, ECMO is usually only 

considered as a last resort due to the complexity of the circuit, imparted blood trauma, and the 

daily cost of the therapy.  Current patient management protocols in ECMO support can provide 

extracorporeal circulation for 1–6 weeks, but the median duration is about 1 week.8 

 

2.1.3. ECMO Circuit 

The fundamental components of the ECMO circuit are shown in Figure 2.1.  Venous 

(deoxygenated) blood is drained from the patient allowing carbon dioxide (CO2) removal and 

blood oxygenation to occur via an external device, and is returned to the patient’s venous or 

arterial circulation.  Extracorporeal access can be configured for ether single (with the use of a 

double lumen catheter) or multiple cannulation sites, depending on the patient needs. 
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Figure 2.1: ECMO Circuit 
The principle function of the extracorporeal circulation is to perform all necessary gas exchange 
for normal physiologic health of the patient. 
 

The complexity of the ECMO circuit introduces several challenges to long-term 

respiratory support.  Though development of the double lumen cannula has played a significant 

role in reducing the ECMO footprint, all ECMO systems consist of a set of essential components.  

In order to overcome the resistance of the gas exchanger (oxygenator), a driving pressure in the 

form of either a centrifugal pump or a roller pump is needed.  Large priming volumes and 

extensive circuit tubing necessitate the use of a heat exchanger to maintain normothermic blood 

temperature in the external environment, which altogether introduce an expansive foreign surface 

area.  To mitigate the activation of biological pathways in the presence of artificial surfaces, the 

priming circuit is often supplemented with albumin, coating the internal surfaces with a protein 

layer, thereby reducing the inflammatory response.  Still, a continuous anticoagulant drip (such as 

heparin), and frequent blood transfusions are necessary throughout the duration of support. 
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2.2. Artificial Lungs  

 Due to the limited availability of mechanical ventilation and ECMO therapies for patients 

with impaired respiratory function, these solutions for long-term pulmonary support are non-

ideal.  For routine bridge-to-transplant procedures, and cases of prolonged lung recovery, there 

are no suitable therapies; the sequelae from mechanical ventilation are undesirable, and ECMO 

can cause significant blood trauma.  A more acceptable solution would be a means to provide 

adequate gas exchange, with low resistance, and excellent biocompatibility. 

 

2.2.1. Overview 

 Each generation of gas exchange devices has brought about fundamental changes and 

insight for improving functional performance while diminishing adverse physiological 

consequences.  Early designs effectively utilized the high surface area of percolating bubbles to 

oxygenate blood, but caused significant blood trauma in the form of mechanical destruction of 

red blood cells (RBCs) and platelets.  Furthermore, these early bubble-oxygenators led to protein 

denaturation and coagulation disorders due to the direct contact of air with blood.11–14   

Other devices created a thin blood film (film-type oxygenators) where gas exchange 

occurred on the surface of the exposed blood film.  But these designs required large surface areas, 

and consequently, high priming volumes.  This configuration also resulted in complications 

arising from direct blood-air interactions. 

 The limitation of direct contact between air and the blood surface seen in previous 

generations of artificial lungs was resolved with the advent of membrane oxygenators.  Similar to 

the native lung, where gas and blood phases are separated by the alveolar capillary wall, 

membrane oxygenators rely on a semi-permeable boundary by which oxygen and carbon dioxide 

species passively diffuse down concentration gradients.  Modern microporous membrane 

oxygenators are designed to allow blood to flow around the outside of the hollow fibers while 

oxygen-rich sweep gas flows through the fiber lumen (see Figure 2.2). 
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Figure 2.2: Dynamics of a Hollow-Fiber Membrane Oxygenator 
Blood oxygenation occurs via simple diffusion of gaseous species as blood flows past an array of 
hollow-fibers.  Most hollow-fiber oxygenators employ the strategy of blood flow across the 
outside surface, and sweep-gas through the fiber lumen.  Non-porous fibers are resistant to 
plasma leakage but have lower gas exchange capacity per surface area than micro-porous fibers.  
Figure has been modified from Cohn.15 
 

The fiber bundle is often comprised of thousands of hollow fibers (200–400μm OD) and 

provides highly effective gas exchange due to its microporous architecture and large surface area-

to-priming volume ratio.  The arrangement of fibers further improves diffusion due to the passive 

convective mixing of blood around the fibers.16,17  This efficiency translates into smaller devices, 

lower priming volumes, and a decreased blood-side resistance.  Membrane oxygenators also 

allow for improved biocompatibility though surface coatings such as Teflon® and silicone, or 

surface-bound anticoagulants such as heparin and nitric oxide.8,18–20 
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2.2.2. Principles of Gas Exchange 

 The lung’s primary role is to provide oxygen (O2) for physiological needs and to remove 

CO2, a metabolic waste product.  Oxygen is poorly soluble in fluids, so most of the O2 in the 

blood (about 98.5%) is transported bound to hemoglobin (Hb); the remainder is dissolved in the 

blood plasma.  Carbon dioxide’s solubility, likewise, is quite low in blood plasma (about 10%), 

but only about 30% is bound to Hb (as HbCO2).  The primary mode of transportation of CO2 is in 

the form of bicarbonate ions (HCO3
−), which constitutes about 60% of the CO2 content in the 

venous circulation. 

Gas exchange in the biological environment occurs entirely by passive diffusion 

according to partial pressure gradients, as characterized by Fick’s first law of diffusion: 

 V̇ ∝ 
A
∆x
𝒟 (P1 − P2), (2.1) 

where V̇ is the rate of gas transfer; A is the surface area; Δx is the membrane thickness; 𝒟 is the 

diffusivity; and P1 and P2 are the partial pressure differences across the semipermeable 

membrane.  Gas diffusion in the native lungs occurs rapidly due to a large alveolar surface area 

(75 m2 in adults) and thin alveolocapillary membrane (~0.5 µm).21,22  In fact, the principle 

diffusion barrier is not the membrane itself, but the diffusivity into blood plasma and nearby 

RBCs. 
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Figure 2.3: Hemoglobin Saturation Curve 
The oxygen-hemoglobin saturation curve characterizes the bulk of the oxygen content carried in 
the blood.  The primary driver for oxygen uptake and release is the O2 partial pressure.  This 
curve is representative of normal physiologic conditions (i.e., pH = 7.4; PCO2 = 40 mmHg; and 
37°C).  Figure courtesy of West.23 
 

The primary driver for both gas dissolution and RBC uptake/release is the partial pressure 

gradient.  For O2 species, the oxyhemoglobin dissociation (or, saturation) curve characterizes the 

total O2 content (bound as HbO2 and dissolved) in an S-shaped relationship with the O2 partial 

pressure, PO2, as shown in Figure 2.3.  The oxyhemoglobin saturation �SO2� refers to the amount 

of O2 bound to each of hemoglobin’s four heme groups as a percentage value, with 100% being 

fully saturated.  The amount of O2 transferred in the blood is therefore the sum of both the oxygen 

bound to hemoglobin, and the amount dissolved in the blood plasma 

 O2 content =  λO2 ∙ tHb ∙ �
SO2

100
�  + αO2 ∙ �∆PO2� , (2.2) 
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where the hemoglobin binding capacity to oxygen  λO2 ≡ 1.34; tHb is the Hb concentration; the 

oxygen solubility coefficient αO2 ≡ 0.003 at 37°C; where O2 content is represented as mL O2/dL 

blood. 

In artificial lungs, the rate of O2 transfer achieved by the gas exchange device can be 

quantified by multiplying the O2 content from Eq. (2.2) by the volumetric blood flow rate through 

the device, Qb, as 

 V̇O2 = 10 ∙ Qb �1.34 ∙ tHb ∙ �∆SO2� + .003 ∙ �∆PO2�� , (2.3) 

where the multiplication factor of 10 serves as a unit conversion; and the change in SO2 and PO2 is 

observed as the device outlet–inlet values.  Since CO2 levels in the ambient air are at trace levels, 

a convenient method for quantifying the CO2 removal performance of the artificial lung is to 

measure the partial pressure CO2 in the exhaust gas (the sweep gas after passing through the 

membrane oxygenator) multiplied by the gas flow rate, Qg, as 

 V̇CO2 = Qg �
EtCO2

P
�  , (2.4) 

where EtCO2 is the end-tidal CO2; P is the barometric pressure; and V̇CO2  is the rate of CO2 

transfer attained by the device. 

 

2.2.3. Device Failure 

The microporous membrane oxygenators used in todays’ CPB procedures have excellent 

gas transfer capabilities, require low priming volumes, and reduce the overall complexity of the 

extracorporeal circuit.  However, these devices are susceptible to several complications which 

limit extended usage.  Plasma leakage and thrombosis, for example, can affect the functional 

performance of the membrane oxygenator, resulting in decreased gas exchange efficiency and 

increased blood-side resistance.24–26 
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During perfusion of the membrane oxygenator, phospholipids will adsorb on the 

hydrophobic fiber surface.  While deposition of the phospholipid continues, surface tension 

across the submicron pores becomes compromised, allowing blood plasma to seep into the fiber 

lumen.25,26  As the severity of the plasma leakage progresses, the fiber lumens no longer serve as 

a conduit for sweep gas flow, resulting in diminished capacity for oxygenation and CO2 removal.  

Some researchers are addressing this issue by investigating novel fiber-coating methods that 

would provide a thin barrier to prevent fiber wetting, while still utilizing the gas exchange 

efficiency of the microporous fibers.19  Others are focused on techniques for manufacturing very 

thin nonporous fibers with materials such as polymethylpentene (PMP) and silicone.19,20,26–28 

Additionally, thrombosis is a significant mechanism of device failure in membrane 

oxygenators, and typically develops later during device usage.  Partially attributed to 

complications with biocompatibility and poor perfusion dynamics, thrombosis will increase 

device resistance and reduce the functional surface area for gas exchange.24,29–32  Like plasma 

leakage, thrombosis is a progressive development, but also carries the added concern for severe 

systemic complications resulting from potential thromboembolisms. 

 

2.2.4. Discussion 

The development of a suitable gas exchange device for long-term respiratory support can 

be summarized as an optimization process.  While oxygenation capacity and CO2 removal can be 

enhanced by increasing the effective surface area, greater foreign surface contact augments 

inflammatory and thrombogenic complications.  Non-porous fiber membranes are resistant to 

plasma leakage, but result in lower gas exchange efficiency.  Further, design configurations are 

continually striving to minimize sites of stagnancy and low flow regions, yet higher flow 

velocities can cause blood trauma. 

As artificial lungs continue to develop and incorporate the collective experience from 

previous device generations, researchers are pressing on towards more successful outcomes with 
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extended usage.  For instance, newer hollow fiber designs have significantly lower blood flow 

resistance than their flat sheet counterparts (adult hollow fiber membranes are typically 10–20 

mmHg versus 100–150 mmHg for spiral silicone membrane oxygenators at clinically relevant 

flow rates)8, while possessing the additional benefit of passive convective mixing—permitting 

lower foreign surface area with comparable gas exchange capacity.  Moreover, a simplified 

extracorporeal circuit is more amenable for the ultimate goal of ambulation.  Patients that can 

achieve physical mobility benefit from improved pulmonary hygiene, increased immune 

response, better nutrition, and an overall increase in psychological outlook and quality of life.  

Whether used extracorporeally or implanted within the patient33, various factors and design 

configurations must be evaluated in the development of a long-term device for pulmonary 

support. 

 

2.3. Computational Fluid Dynamics 

CFD is becoming a leading component in medical device design by providing predictions 

of device performance for a variety of research focuses.  With increases in computational 

resources and numerical techniques, the accuracy and scope of CFD applications are rising.  For 

membranous devices such as artificial lungs and hemodialyzers, CFD can provide cost-effective 

insight into device performance compared with conventional manufacturing and in vitro testing.34 

 

2.3.1. Applications in Membrane Oxygenators 

Over the past couple of decades, numerical analytic assessments of the fluid flow using 

CFD have been utilized for evaluating characteristics of artificial lung designs such as pressure 

distribution, perfusion dynamics, and gas transport properties.29,30,34–42  With adjustments in 

simulated boundary and flow conditions, parameters influencing gas exchange efficiency and 

areas of recirculation are easily modified to obtain a device with desired properties. 
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Most CFD applications in membrane devices investigate steady-state conditions such as 

pressure distribution and velocity fields.  Pathlines and streamlines yield information as to how 

blood flows through channels or around surfaces and variances in fluid velocities, particle 

residence time, and pressure contours have been used to assess global uniformity of the flow 

field.36–40   

It is well known that non-uniform perfusion characteristics are undesirable, and it is often 

believed that flow path inhomogeneities can lead to stagnant blood flow and thrombosis in the 

artificial lung.  Graefe et al. used CFD to improve the flow distribution by altering inlet and outlet 

port configurations36, and Gartner et al. observed a correlation between thrombotic deposition in 

vivo and velocities predicted by CFD which resulted in low local convective mass transport.29  

Likewise, hollow-fiber hemodialyzers are designed to achieve uniform flow distribution in order 

to eliminate significant blood-to-dialysate flow mismatches, and to optimize diffusion 

efficiency.43,44 

 

2.3.2. Navier–Stokes Equations 

The governing equations for viscous incompressible fluid flow are the momentum 

balance equation and conservation of mass, expressed respectively as 

 ρ
Du
Dt

 = − ∇p  +  μ∆u + FB , (2.5) 

and 

 ∇ ∙ u = 0 , (2.6) 

where ρ is density; D/Dt is the substantial derivative; Δ is the Laplacian, and ∇ is the gradient 

operator in an appropriate coordinate system; u ≡ (u1, u2, u3)T  is the velocity vector; p is 

pressure; μ is dynamic viscosity; and FB is the body force term (e.g., gravitational forces and 

source terms).  Though additional partial differential equations (PDEs) may be required to fully 
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describe the fluid flow (depending on assumptions held, such as energy conservation, etc.), Eqns. 

(2.5) and (2.6) will suffice for the problem statements in this dissertation. 

The non-linear partial differential Navier–Stokes (N.–S.) equations are discretized in 

space and time, resulting in a set of algebraic equations which is solved iteratively at each 

discrete time point.  For the incompressible N.–S. equations, most commercial CFD software, 

including ANSYS® Fluent, employ projection methods related to the SIMPLE method of 

Patankar45, which initially solve the momentum equations in the absence of any pressure gradient 

terms, and then discretely invoke the divergence-free condition for computing pressure, thus 

implying that pressure can be calculated given the velocity field is known.46  Yet, since pressure 

is not explicitly stated in the divergence-free equation, and only the gradient of pressure appears 

in the momentum equation, non-unique solutions may exist for given pressure distributions.  

Moreover, pressure computed in this way differs somewhat from physical pressure, especially at 

low values of Reynolds number.   

 

2.3.3. Grid Convergence 

 Once changes in the flow properties following additional iterations are less than a 

prescribed value, the solution is considered converged.  Residuals provide a measure of 

convergence of the conservation equations for the solution iterations; where typically three orders 

of magnitude in residual reduction are required for consideration of solution convergence.   

Prior to concluding information from CFD simulations, it is important to verify that the 

solutions are mesh-independent.  In steady-state (time-independent) simulations, refinement of 

the CFD grid with respect to spatial resolution conveys information regarding the discretization 

error of the simulation.  As the grid spacing decreases (increasing grid resolution), spatial errors 

in the numerical results should converge to zero. 

 The test for grid convergence is based on Richardson’s extrapolation in which 

successively finer grid-spacing will eliminate dominate truncation errors.47,48  If {xi}i = 1
n  represents 
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discrete grid points with a uniform step size h = xi + 1 − xi , and  f (x) is the exact (true) value of 

the function f (e.g., pressure loss) on a bounded domain  Ω ⊂  ℝ , then the corresponding 

numerical approximation  f  h(x) is evaluated as 

  f  h = f + τ1hq1 + τ2hq2 + 𝒪(hq3) , (2.7) 

where qm is the order of the discretization method with qm ∈ ℝ, m = 1, 2, …, N; and τm is the 

truncation error with τm  ∈  ℂ.  The dominant error of  f h is therefore 

  eh = f − f  h = − τ1hq1 . (2.8) 

In practice, q1 is the theoretical order (or rate) of convergence of the numerical algorithm 

used in the CFD code, but grid sizes, boundary conditions, and numerical models can reduce the 

observed order of convergence.  A direct evaluation of q1 can be obtained from three numerical 

approximations as 

 
 q1 = 

ln� f  h− f  h/r

f  h/r− f  h/r2�

ln(r)   , 
(2.9) 

where r is the refinement ratio, defined as 

  r = 
h2

h1
 , (2.10) 

in which h1 is the finer (smaller) grid spacing (thus r > 1); and r is constant.  Neglecting higher-

order terms, the error of the grid with refinement r is therefore 

  eh/r = f − f  h/r= − τ1(h/r)q1 . (2.11) 

Multiplying Eq. (2.8) by (1/r)q1 and subtracting from Eq. (2.11), the estimate of the continuum 

value becomes 

  f ≅ f1 + 
f1 − f2
r q1 − 1

 , (2.12) 

where the numerical solution has computed the grid functions f1 and f2 for two grids of spacing h1 

and h2, respectively. 
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2.3.4. Discussion 

Once grid convergence studies have been performed and errors from discretization 

methods have been addressed, CFD predictions may still deviate from physical results due to 

errors in geometric modeling and boundary conditions, as well as uncertainties in modeling 

constraints and simplifying assumptions.  Moreover, since the governing equations are complex 

PDEs, multiple solutions may exist.  

Generally speaking, CFD simulations do not serve as a replacement for experimental 

studies.  Rather, CFD provides predictions of experimental variables which can help lower the 

amount of experimental testing and study costs; the accuracy of CFD simulations is ultimately 

limited by the strength of the underlying assumptions and the validity of the physical models 

incorporated into the governing equations. 

When utilizing CFD for design analysis of membrane artificial lungs and other mass 

transfer devices, accurate predictions require validated flow and species transport properties.  

Often, experimental validation for these devices is based on comparison of numerical and 

experimental pressure distributions.30,40–42  For example, Funakubo et al. correlated overall 

numerical and experimental pressure drop30, whereas both Gage et al. and Zhang et al. sampled 

pressure distribution from multiple sites drilled along the exterior housing of devices being 

tested.40,42  But neither of these studies acquired data validating the actual velocity field inside the 

fiber bundle despite its obvious importance. 

Unfortunately, for membrane devices such as the artificial lung, direct observation of the 

perfusion dynamics is difficult to accomplish experimentally due to the opacity of the fiber bed, 

so limited emphasis has been placed on confirmation of numerically simulated velocity fields.  

While only a few studies have experimentally analyzed the perfusion dynamics in membranous 

devices, most of these data either lack spatial resolution or are restricted to unidirectional flow 

fields.43,44,49–52 
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Since pressure is an integral property in incompressible N.–S. equation solutions, non-

unique velocity fields might exist for a given pressure distribution. This principle, therefore, 

suggests that although it may be shown that experimental and numerical pressure fields are 

consistent, this does not necessarily confer accurate modeling of the numerical velocity field.  It 

is the purpose of this dissertation to identify a method for obtaining experimental perfusion data 

through the fibrous medium in order to verify the accuracy of the numerical models. 

 

2.4. Flow through Porous Media 

 A porous medium is a material that contains voids (or pores) in which the measure of 

void space is quantified by the porosity (ε), defined as 

 0 ≤ ε = 
Vv

Vv + Vs
 = 

Vv

Vt
 ≤ 1 , (2.13) 

where Vv is the void volume; Vs is the solid volume fraction; and Vt is the total volume of the 

material.  Often, Vv and Vs form two interpenetrating continua, but in applications of fluid 

transport, permeation through the porous medium is influenced by the effective porosity, εeff, 

which describes the void space that is accessible to flow.   It is worth commenting, however, that 

although εeff may be significantly less than ε, it is not easily measured and often only addressed 

heuristically. 

 

2.4.1. Introduction 

The flow of fluids through porous media is frequently encountered in a variety of 

biomedical, chemical, and environmental applications, where understanding the dissipation of 

mechanical energy due to viscous and inertial resistance is extremely important.  Physical 

characteristics of the fluid (viscosity and density), the porous medium (packing density, 

orientation, size, shape, and roughness), and experimental regime (rate of fluid flow, temperature, 

and pressure) are factors which influence permeation. Studies of fluid flow through fixed and 



www.manaraa.com
18 

 

fluidized granular beds53–57 and fibrous media58–63 have provided empirical correlations which 

characterize pressure losses over a range of media porosities. 

 

2.4.2. Functional Importance of the Reynolds Number 

 The Reynolds number (Re) is a dimensionless group which completely defines a system 

of fluid motion by providing a measure of inertial to viscous forces.  Properties of the porous 

medium that influence flow behavior include porosity and the equivalent spherical diameter, dp.  

Various flow regimes have been characterized for Newtonian fluids in porous media by the 

interstitial Reynolds number, Rei,55,56,64,65 

 Rei = 
ρUdp

μ(1 − ε)  , (2.14) 

where the following ranges are defined65: 

(a) Darcy or creeping flow (Rei < 1); linear relationship between pressure drop and flow 

rate; dominated by viscous forces.  At Rei ≅ 1, boundary layers begin to form near 

the pore walls. 

(b) Inertial flow (1 < Rei < 10); steady laminar flow; persists to Rei ≅ 150.  Boundary 

layers become more pronounced and the formation of an inertial core contributes to a 

non-linear relationship between pressure drop and flow rate. 

(c) Unsteady flow (150 < Rei < 300); laminar flow characterized by the formation of 

waves under certain porous arrangements.56 

(d) Unsteady and chaotic flow (Rei ≥ 300); turbulent flow dominated by eddies. 

The non-linear relationship between pressure drop and flow rate occurring at Rei ≅ 5 is attributed 

to pressure drag due to flow separation behind each particle (or fiber) and is not the onset of 

turbulence.64  In fully turbulent flow (Rei ≥ 300), local losses due to flow expansions and 

contractions of the flow path are additive and dominate the overall pressure drop.  For an 
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incompressible Newtonian fluid through a given porous medium, the Rei is directly proportional 

to the superficial velocity, U, defined as 

 U = 
Q
A

 , (2.15) 

where Q is the flow rate; and A is the cross-sectional area of the fiber bundle. 

 

2.4.3. Darcy’s Law 

 According to Darcy’s Law66, the pressure drop per unit thickness, Δp/Δx, for slow flow 

through porous media, is dominated by viscous forces and can be described as a function of 

viscosity and permeability, k, given by 

 
∆p
∆x

 = − 
μ
k

U . (2.16) 

The widely used Blake–Kozeny equation estimates pressure losses across a granular bed under 

Darcy flow as 

 
∆p
∆x

 = − �α
(1 − ε)2

ε3
μU
dp

2 �  , (2.17) 

where α is a constant; and ε ≤ 0.5 for a regular arrangement of cylindrical fibers constituting the 

flow obstruction.67 

 In recent work by Pacella et al., it was shown that for low flow rates, the Blake–Kozeny 

equation adequately predicted the Darcy permeability in layered fiber bundles (fibers stacked 

parallel or perpendicular to the flow field) for ε = 0.47–0.67, but it is important to emphasize that 

a unique relation between k and ε is not usually available.68 

 

2.4.4. Ergun Equation 

Under higher flow velocities (non-Darcy flow), kinetic energy losses occur due to 

direction changes in streamlines. The resistance created by inertial effects is proportional to the 

fluid velocity to the second power 
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∆p
∆x

 = − �β
1 − ε

ε3
ρU2

dp
�  , (2.18) 

where β is a constant.69  Total energy losses in porous beds can then be treated as a sum of 

viscous and kinetic losses: 

 
∆p
∆x

 = − �α
(1 − ε)2

ε3
μU
dp

2  + β
1 − ε

ε3
ρU2

dp
�  , (2.19) 

which is often referred to as the Ergun equation.54 

 
Figure 2.4: Pressure Drop through Porous Media according to the Reynolds Number 
The pressure drop per unit thickness through porous media is characterized by three primary 
regimes: viscous-dominated (Blake–Kozeny); inertial-dominated (Burke–Plummer); and a 
transitional zone, 10 < Rei < 103, where both viscous and inertial forces contribute to pressure 
losses. 
 

 The dynamic relationship between viscous and inertial forces characterized by the Ergun 

equation is shown in Figure 2.4.  For low Rei, pressure losses are dominated by viscous forces 

(Blake–Kozeny), whereas inertial forces dictate momentum loss in higher flow regimes (Burke–

Plummer); with noticeable derivation from strictly laminar flow occurring at Rei > ~10. 
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2.4.5. Calculating Permeability and Inertial Coefficients 

For a known cross-sectional area, the measured pressure drop for various flow rates can 

be fitted using a least-squares correlation of the form70 

 ∆p = aU 2 + bU , (2.20) 

where α and β of Eq. (2.19) can be evaluated as 

and 

where again, Δx is taken to be the fiber bundle thickness; and U is the experimental superficial 

velocity.  Studies by Ergun, Leva, and Macdonald et al., have empirically determined α to be in 

the range of 150–200, and β to be 1.75–4.0 for air flow in packed beds of spherical particles.54,55,71   

 

2.4.6. Numerical Approximation of Porous Media 

 In numerical analytical approximations of fluid flow through porous media, the 

associated pressure losses can be incorporated into the N.–S. momentum balance equation (Eq. 

2.5) as a momentum sink, represented by a single source term, S: 

 ρ
Du
Dt

 =  − ∇p + μ∆u + FB + S , (2.23) 

where 

The Ergun approximation is one of the most commonly used relationships for prescribing 

pressure drop through a fiber bundle according to simultaneous viscous and kinetic energy losses, 

  α = �
ε3

(1 − ε)2  
bdp

2

μ∆x
�  , (2.21) 

   β = �
ε3

(1 − ε)
adp

ρ∆x
 �  , (2.22) 

  Si = −�α
(1 − ε)2

ε3dp
2 μui + 

1
2

 β
(1 − ε)

ε3dp
ρUui�  . (2.24) 
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and studies have shown using S to characterize momentum loss in the fiber bundle are acceptable 

for predicting pressure distributions in hollow fiber membrane oxygenators.29,30,37–42   

For empirical studies of flow through fibrous media16,68 and those based on unit cell 

models72,73, the equivalent spherical diameter is traditionally taken to be a function of ε and the 

hydraulic radius, rh, 

  dp = 6rh
1 − ε

ε
 , (2.25) 

in which rh is the is a ratio of Vv, and the wetted surface area, Av, 

  rh = 
Vv

Av
 . (2.26) 

Yet, for CFD studies of macroscopic flow through fibrous membranes, studies often 

define dp = do, the fiber outer diameter; with generally good agreement to experimental pressure 

measurements.29,39–41 

 

2.4.7. Superficial, Physical, and Tortuous Velocity 

 Often the superficial velocity is used when defining permeability through porous media, 

because U does not require information regarding flow velocities inside the porous bed—since 

such information is usually unavailable.  Yet, for purposes of validating the flow field inside a 

fibrous medium, such information is required. 

In Blake’s derivation of the Darcy permeability (Eq. 2.17), he uses the Dupuit assumption 

that the velocity through the packed bed is inversely proportional to the bed porosity.67,74  This 

characterized by the average physical (or interstitial) velocity, U�p, and can be calculated from U 

and ε by the formula 

   U�p = 
U

ε cos(θ)  , (2.27) 

where cos(θ) represents the macroscopic flow path of the fluid, and is reflective of the packing 

arrangement of the bed and the effectiveness of the void space.55  For a packed bed of spherical 
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particles, Carman showed that cos(θ) was evenly distributed about the mean 45° angle57; though, 

often cos(θ) is taken to be equal to unity.54,64,70,75 

 The actual microscopic flow path of the fluid around particles of the bed is the tortuous 

velocity, Ut.  Inasmuch confusion exists around nomenclature (also referred to as pore-, and 

capillary-tube velocity) there also appears no unified verdict as to its value and meaning, but for 

discussion, the hydraulic tortuosity, τ, is defined as 

 τ = 
Le

L
 ≥ 1 , (2.28) 

where Le is the mean effective length that the fluid particle travels; and L is the straight-line 

distance through the medium in the direction of the bulk flow (i.e., fiber bundle thickness).56,76  

Therefore, 

   Ut = τ U�p , (2.29) 

and it follows that 

  Ut = τ
U

ε cos(θ)  ≈ τ
U
ε

 . (2.30) 

Although tortuosity influences the permeability of the porous media, tortuosity itself is not an 

intrinsic property of the packed bed, but rather is contingent upon the method used in its 

calculation.76–78  For clarity, the differences between the various measurable velocities are 

illustrated in Figure 2.5. 
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Figure 2.5: Superficial, Physical, and Tortuous Velocity 
Superficial velocity, defined as the volumetric flow rate divided by the frontal surface area, is 
independent of porosity.  Physical velocity accounts for the macroscopic flow through the porous 
media (a function of porosity) and may exist for 0< θ <180°, assuming no backflow.  Tortuous 
velocity details the microscopic flow permeating around individual porous elements.  The 
relationship between the three measures of velocity is: U ≤ U�p ≤ Ut. 
 

 

2.4.8. Discussion 

 A porous medium can encompass a broad range of properties, composition, and 

environmental conditions; all of which are parameters that influence the permeability of a fluid 

(which itself may possess equal variety in nature).  Because of the expansive variability in a 

system involving a permeating fluid, the permeability of a porous material is largely domain-

specific.  A brief survey of the literature will reveal numerous porous applications, 

configurations, and measurements of permeability in addition to those presented here.79–85  
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Nevertheless, permeability is principally governed by a viscous and inertial resistance to fluid 

flow, to the first- and second-order respectively.  At low Re, permeability is linearly proportional 

to the pressure drop and superficial fluid velocity; whereas at higher rates, the viscous resistance 

becomes negligible and the inertial term dominates the pressure losses contributed by the fiber 

bundle. 

Often, the porosity of the volume and the empirical coefficients in Eq. (2.19) are used to 

determine the permeability of the medium.  Under this construct, porosity is an important 

parameter since it appears as second- and third-power terms.  Though it is more difficult to 

ascertain in samples of unknown composition, porosity can easily be calculated from a device 

with prescribed manufacturing specifications.  However, although fractional void volumes might 

be known, there may still exist uncertainties in the homogeneity, or isotropy of the packing 

arrangement, where εeff ≠ ε.  Therefore, for nontrivial cases, permeability is often verified using 

additional forms of measurement. 

 

2.5. Conventional Techniques for Visualizing Fluid Flow 

 Since the performance of a gas exchanger depends heavily on the fluid flow properties 

through the fiber bundle, it is important to experimentally verify the permeability predictions of 

the device and fiber membrane.  Typically, optical methods provide real-time, non-invasive 

measurements that are fairly simple in application, however, require specially designed housings 

or specific materials.  Quasi-optical imaging modalities such as magnetic resonance imaging 

(MRI) and computed tomography (CT) can also provide relatively real-time acquisition and are 

less restrictive to membrane materials, but often demand more complex principles and/or 

reconstruction.  Finally, several non-optical techniques offer good versatility, but usually 

necessitate invasive or destructive methods to both the device and/or flow field. 
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2.5.1. Optical Methods 

 Some of the most common optical techniques for visualizing fluid flow are based on 

particle tracking methods.  These systems require the fluid—and its container—to be mostly 

transparent and the flow field to be seeded with neutrally buoyant tracer particles (usually a few 

microns in diameter).  Depending on the particle density in the flow field, instantaneous velocities 

can be calculated either tracking individual particle displacements (particle tracking velocimetry, 

or PTV), or by performing statistical correlation methods (particle image velocimetry, or PIV).  

Modern PIV equipment are capable of operating at 1000s of frames per second (fps) and can 

provide highly resolved 3-D velocity fields by reconstructing projections from multiple viewing 

angles.86–89  Yet, for visibly opaque systems (as is the case for most porous media), optical 

methods such as PIV are unusable. 

 

2.5.2. Imaging Methods 

Most techniques for acquiring perfusion dynamics in membranous devices rely on 

various imaging modalities such as MRI or CT, since opacity is not a limitation with these 

instruments.43,44,49–51,90  Further, the methods for quantifying fluid flow using these imaging 

systems are generally available on most clinical and research units, which makes accessibility of 

these techniques quite useful for a range of applications. 

In studies by Poh et al., MRI was used to investigate the effect of various configurations 

of flow baffles in a hollow fiber hemodialyzer and its effects on the fluid distribution for 0.2–1.0 

L/min flow rates.43  Similarly, Heese et al. used MRI to quantify fluid flow through both a 

hemodialyzer and an arterial blood filter at clinically relevant flow rates.50  In both studies, the 

velocity-imaging techniques provided highly resolved insight into the spatial distribution of fluid 

flow, but were limited to mostly unidirectional flow.  Further, due to long acquisition times, MRI 

measurements may be susceptible to motion artifacts. 
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Alternatively, Ronco et al. evaluated the uniformity and flow distribution in various 

hollow fiber hemodialyzers manufactured with different fiber configurations using a clinical CT 

scanner.44  Uniformity was assessed based on 1-D regional velocity calculations at defined 

sections in a unidirectional flow field, and was useful for comparing velocities between flow in 

the center of the device and that moving parallel along the peripheral walls of the unit.  Likewise, 

the study by Lu and Lu introduced an interesting method using CT imaging for tracking flow 

through a densely bundled hollow fiber membrane, but their technique employed various 

subjective thresholds and neglected to report additional analysis such as vector fields.51  Many 

other applications, advantages, and limitations of measuring fluid flow with techniques based on 

X-ray imaging will be discussed later in §2.6. 

 

2.5.3. Non-Optical Techniques 

Non-optical experimental techniques, such as those based on electrochemical and 

convective methods have been used to evaluate membrane perfusion.  In a study assessing the 

uniformity of fluid flow for different membrane oxygenator designs, Hirano et al. placed 120 

insulated copper electrodes throughout the fiber bundle and measured the time-dependent blood 

perfusion by varying the electrical potential of the infused fluid at 1 and 5 L/min.52  Alternatively, 

hot-wire anemometry (often, constant temperature anemometry, or CTA) has been used to 

monitor local velocity changes by measuring convective losses from a thin wire.49  Both CTA and 

electrochemical means provide real-time flow information, but each would require wires or 

probes to be integrated into the membrane.  In addition to imposing physical alterations which 

could influence the normal flow properties, these methods provide limited spatial resolution and 

only yield point-wise velocity information. 
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2.5.4. Discussion 

 Experimental evaluation of the perfusion dynamics though an opaque porous medium 

such as a membrane oxygenator is a nontrivial problem.  Optical methods for quantifying fluid 

flow are ineffective in the absence of a transparent system, and non-optical methods generally 

require invasive actions, are limited to single-dimensional measurements, and have poor spatial 

resolution.  Therefore, imaging modalities offer the most probable approach for obtaining 

quantitative information of flow through a porous medium. 

 Phase contrast (PC) MRI can generate 3-D flow fields with excellent spatial resolution, 

but require long acquisition times, which may be susceptible to fluctuations in the flow field.  

Yet, recently, advances in FLASH MRI have generated 2-D image sequences with temporal 

resolution of 20 ms and spatial resolution of 1.5–2 mm.91 

Unfortunately, applications in MR imaging are limited by the physics of image 

acquisition and reconstruction.  For example, localized velocity averaging occurs for pixels 

containing counter-current velocities or large discrepancies in nearby flow.  Thus, in the case of 

the hollow-fiber membrane oxygenator, pixels that overlap the fluid zone and the void regions in 

neighboring fiber lumens would result in an underestimation of the local velocity.  Further, the 

presence of magnetic materials will disrupt the image signal. 

Alternatively, CT imaging uses less complex image reconstruction methods than MRI, 

requires lower acquisition times, and provides good spatial resolution.  Despite the lower contrast 

discrimination and spatial resolution than MRI, the faster temporal response means greater 

invariance to motion artifacts, and for this reason, much has been done in developing methods for 

measuring fluid flow using X-ray techniques. 

 

2.6. X-ray Imaging for Measuring Fluid Flow 

 X-ray imaging modalities (including CT, angiography, etc.) offer high spatio-temporal 

resolution which can be useful for real-time visualization of fluid flow.  In medical applications, 
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rapid X-ray imaging techniques (up to 60 fps) are used for purposes of evaluating blood flow 

perfusion through a vascular network, particularly in the treatment of cerebral aneurysms. 92–100 

 

2.6.1. Principles of X-ray Imaging 

 X-rays are high energy photons of electromagnetic (EM) radiation that travel in straight 

lines unless scattered or absorbed by an obstructing material.  An X-ray tube accelerates particles 

(electrons) toward the positive atomic nuclei of a target material (e.g., tungsten) whereby EM 

radiation is emitted from either deceleration of the electron or collision with an electron from the 

electron shell of the metal anode.101 

 In studies of fluid flow, contrast agents such as iodine, xenon, or barium are often used to 

enhance absorption of incident X-rays to improve image visibility via the photoelectric (PE) 

effect.  Contrast agents appear dark in an X-ray image because their K-edge coincides with the 

peak energy in the X-ray spectral distribution.101    Numerous methods exist for detecting X-rays, 

but most rely on the PE absorption by a high molecular weight material (e.g., silver, phosphor, or 

selenium).101  Some modern detectors, like those used in radiography and fluoroscopy, use an X-

ray scintillator and photocathode to convert incoming X-rays to visible light which can be 

digitally recorded by a video camera.101–105  Other emerging technologies, likewise, deviate from 

the expensive, traditional film-type detectors with developments in solid state receptor plates, 

which convert the incoming EM radiation into a distribution of electric charges.101,106,107  It shall 

be noted, that though the principles and processing techniques contained herein can be applied to 

analysis of film-based X-ray images, the discussions that follow will assume the image to be 

digitized. 

 

2.6.2. Digital Subtraction Angiography 

A well-established X-ray technique for visualizing contrast-enhanced flow is digital 

subtraction angiography (DSA).100,108,109  In this approach, sequential radiographs of the contrast 
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perfusion are subtracted from a background (or “mask”) image taken prior to the infusion of the 

dye.110,111  Once background details are removed, the image histogram is digitally enhanced to 

optimize the image contrast visibility.  This digital subtraction and enhancement technique 

improves the signal-to-noise ratio (SNR) by eliminating background structures that would 

otherwise convolute the flow features being imaged. 

 

2.6.3. 2-D Videodensitometric Tracking Methods 

 In a series of X-ray images, the contrast density, D(x, y, z, t), of each pixel (2-D “picture 

element”) is represented by a position in space at a given time.  Since an X-ray image is a 

measure of the penetrating EM radiation, D is already integrated over the z-direction (this is 

discussed further in §2.6.4.).  If the flow field can be assumed to be axisymmetric in the 

orthogonal x and y planes (such as flow in a blood vessel or pipe), the contrast density can be 

reduced to a single-dimension by integrating over the cross-section 

  D(x, t) = �D(x, y, t)dy  , (2.31) 

where {x, t} ≥ 0. 100 

 In general, bolus tracking algorithms for 2-D densitometric images fall in two categories: 

time-density and distance-density methods.  The former approach measures the transit time of the 

contrast medium from one [defined] region to another; the latter calculates the distance traveled 

between sequential frames (see Figure 2.6).92,94,100,109  Both time-density and distance-density 

methods assume the contrast is evenly and homogenously distributed throughout the flow field; 

an assumption that is usually satisfied if the contrast medium has a viscosity approximately equal 

to the bulk fluid and has been infused at a rate greater-than or equal to the superficial velocity.94 

 Time-density tracking methods rely on observing changes in image intensity as a function 

of time between two fixed regions of interest (ROIs).  Numerous methods exist for measuring 

bolus arrival times, including time-of: peak-to-peak; threshold density; center of gravity; leading 
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edge detection; etc.100  These algorithms have the advantage of being simple in construct, but are 

ill-suited for analysis of instantaneous velocities in pulsatile flows.100  

Distance-density methods, on the other hand, assess flow velocity by measuring the 

distance a certain intensity threshold (e.g., 50% of maximum) travels between two successive 

images.  Distance-density methods are usually more accurate than time-density approaches since 

spatial resolution is typically higher than temporal resolution.92  Yet, analysis based on a defined 

threshold may be vulnerable to over-/under-estimation of the flow velocity, depending on how 

changes in contrast intensity are defined.100 

 
Figure 2.6: Time-Density and Distance-Density Bolus-Tracking Analysis Curves 
Time-density algorithms (left) measure the time difference between contrast-density curves for 
two defined ROIs; velocity is defined as the distance between the ROIs divided by Δt.  Distance-
density methods (right) calculate distance traveled between successive image frames according to 
a prescribed contrast threshold; velocity is defined as the distance between relative contrast levels 
divided by the time difference between successive images.  The shape of the contrast density 
curves varies between inlet and outlet phases due to convective dispersion and/or branching of the 
infusion bolus. 
 

 

2.6.4. Combining Multiple Imaging Projections 

 For a 3-D body, planar X-ray images provide little depth information since the X-ray 

projection is a sum of the total attenuation effects between the source and detector.  Visual clues 
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such as surface texture, shading, and occlusion are absent from image projections, and depth 

perception is primarily achieved only from motion parallax in an image series.112,113  However, 

the combination of two-or-more projections from different vantage points can be useful in 

interpreting “z-plane” details through various reconstruction approaches. 

 The most common method of X-ray reconstruction—and the approach used by most CT 

scanners—is performed through Fourier back-projection or similar algebraic techniques.101  Using 

multiple projections spaced rotationally around an object, images are overlaid, or reconstructed, 

into 3-D renderings, with better clarity achieved from a greater number of image projections (see 

Figure 2.7).   
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A) B) C) 

   
   
D) E) F) 

   
   

G) H)  

  

A) 1 Projection 
B) 2 Projections 
C) 4 Projections 
D) 8 Projections 
E) 16 Projections 
F) 32 Projections 
G) 180 Projections 
H)  Original Image 

 

 

Figure 2.7: Slice Reconstruction through Filtered Back-Projection 
The sequence of images from A to G illustrates the filtered back-projection method for the 
Shepp-Logan phantom using rotationally-distributed projection angles.  Features of the image 
pattern become visible with higher number of reconstructed projections.  The original phantom 
image is shown in frame H. 
 

Tomographic techniques using filtered back-projection methods provide high spatial 

resolution, but only modest temporal response.  Alternatively, details in the through-axis-plane 

may also be accomplished by stereoscopic methods without requiring tomographic 

reconstruction, whereby principles from visual depth perception are applied in the position of 
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two-or-more X-ray sources with angles of separation ranging from a few degrees to fully 

orthogonal.103,112–114  The offset between the two sources leads to slightly different images (viz., 

line integrals), and together generate a stereoscopic field of view (FOV), where corresponding 

markers in the stereoscopic image pair can be extrapolated to identify their 3-D position (see 

Figure 2.8). 

 
Figure 2.8: Illustration of Stereoscopic Reconstruction 
Offsetting two-or-more X-ray sources/detectors about a central rotational axis provides 
alternative viewing angles useful for 3-D depth information.  The area of overlap characterizes 
the stereoscopic FOV.  Points existing in the FOV generate unique positions according to the 
combined locations between different image projections, and therefore allow spatial 
reconstruction in the stereoscopic z-plane.  Depth resolution is dictated by the pixel spacing of 
image projections. 
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 When unique features or markers in the stereoscopic projections are limited, or possibly 

indistinguishable, various strategies have been developed—mostly based on iterative processes.  

Since reconstruction from two planar images is an ill-formed problem, these techniques usually 

require a priori information and/or restrictive assumptions.  For example, when reconstructing 

patient vasculature from biplane X-ray radiographs, Pellot et al. originally prescribed an elliptic 

approximation for the vessels, and then used an optimization algorithm to recursively deformed 

the shape according to back-projection gray-level (i.e., contrast density) values (Figure 

2.9A).115,116  Similarly, Prause et al. used a 3-D anatomical model of the heart as the initial 

framework for iterative reconstruction of the left and right ventricles imaged with biplane 

angiography (Figure 2.9B).117 

 
Figure 2.9: Iterative Reconstructive Methods from Biplane Angiography 
A) Iterative reconstruction of a branching vessel based on deforming 2-D elliptical 
approximations.  Image courtesy of Pellot et al.116  B) Binary reconstruction of the left ventricle 
from biplane image projections.  The average shape of 20+ patient hearts served as an initial 
template by which further iterations were guided.  Image courtesy of Prause et al.117  Most 
reconstruction methods construct volumetric models from stacks of 2-D data. 
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2.6.5. Discussion 

 The high spatio-temporal resolution of X-ray imaging techniques has encouraged 

numerous studies for measuring fluid flow in opaque systems that were previously inaccessible 

with optical methods.  X-ray velocimetry utilizes the same principles as optical PTV and PIV and 

has been shown to be a reliable tool in both 2-D and 3-D applications.102–104,118  Further, 

techniques such as X-ray DSA improve visualization of the contrast-enhanced flow and can be 

performed real-time.  Yet, selection of the appropriate X-ray imaging approach is study-specific.  

CT lacks temporal response for dynamic events and requires advanced reconstruction algorithms 

from multiple image projections, whereas non-tomographic means are generally simpler to 

implement, interpret, and faster in acquisition, but often require incorporation of approximations 

and assumptions.  Features of the flow field such as pulsatility and the extent to which the flow is 

axisymmetrical will also narrow applicable measurement strategies. 

 For instance, bolus-tracking methods are, computationally, relatively simple, but are ill-

suited for pulsatile flows and may result in incorrect measurements for non-plug flow, divergence 

in the contrast bolus, or in the case of backflow.100  In addition to assuming a homogenous 

contrast distribution, most 3-D (and some 2-D) reconstruction methods require a linear 

relationship between changes in the X-ray intensity and density of the contrast agent.15,115,117,119 

 Three-dimensional reconstruction of fluid flow using limited (e.g., two) projections can 

be useful in estimating the z-plane profile, but the problem remains ill-posed since two 

projections are not sufficient to resolve all of the through-plane information—even in sparse 

systems.  Since X-ray projections represent sums of the total attenuation of the X-ray beam 

through the absorptive medium, images lack depth clues such as reflection, occlusion, and surface 

texture.  Further, gray-level intensities, based on contrast density, might provide some depth 

perception, but are uninformative at steady maximum opacity of the image field due to unknown 

exact peak values.92  Often, strategies such as incorporating a priori information or reducing the 

system to a binary flow field can improve reconstruction approximations, but are limited to 
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application-specific venues.114–117  Still, others have developed algorithms based on motion 

parallax and convective dispersion models using rotational projections.99,120 

 Although numerous assumptions and approximations are often utilized to resolve 

information from planar X-ray images, image projections do provide useful details regarding the 

dynamic behavior of fluid flow in opaque systems.  In applications of CFD verification and 

validation, X-ray imaging techniques can be helpful for supporting numerical results, whereas the 

CFD simulations can be used to resolve specific features in the flow field. 

 

2.7. Conclusions 

The development of a suitable gas exchange device for long-term respiratory support 

requires evaluation of various factors and design configurations to improve the biocompatibility 

and performance of the device.  Numerical simulations are valuable in providing predictions of 

physical data and can help lower the amount of experimental testing, but the accuracy of CFD 

studies is ultimately limited by the strength of the underlying models and assumptions 

incorporated into the governing equations of fluid flow.  Validation of CFD results in membrane 

oxygenators traditionally has been based on comparison of numerical and experimental pressure 

distributions alone, since direct observation of the perfusion dynamics is difficult to accomplish 

due to the opacity of the fiber bed.  However, the availability of X-ray imaging modalities to 

provide real-time, non-invasive assessments of fluid flow in opaque systems presents an 

opportunity for validating numerical simulations of fluid flow in membrane oxygenators. 

 
 
 
 
 
 
 
 

© Cameron C. Jones 2012  
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3. CFD MODEL 
 
 
 
 
 
 
 
3.1. Overview of the Test Device 

A schematic of the general flow direction in the Affinity Oxygenator (Affinity NT® 

Oxygenator, Medtronic, Minneapolis, MN) is shown in Figure 3.1.  Deoxygenated blood from the 

patient enters the device and passes through a heat exchanger to maintain body temperatures 

during device usage. The venous blood flows up the inlet tube, reverses direction in the inner 

flow channels, and permeates through the fiber bundle in a radial fashion.  Gas exchange occurs 

in the fiber bundle region of the device due to local diffusion gradients, and is collected in an 

outer gap before exiting the outlet port. 
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Figure 3.1: Representation of the Test Device 
The general flow path in the Affinity NT® Oxygenator: Deoxygenated blood enters from the 
bottom left of the device, passes over the heat exchanger, and continues upward through the inlet 
tube.  After reaching the top of the device, blood changes direction and flows down tapering 
channels, which facilitate an even distribution across the inner diameter of the fiber bundle.  Gas 
exchange occurs in the fiber bundle and blood is collected in an outer gap, upon which the 
oxygenated blood is returned to the patient. 
 

 

3.2. Computational Domain 

Geometrical representations of the membrane oxygenator were drawn in a commercial 

CAD program (SolidWorks 2007, SolidWorks Corp., Concord, MA), and meshed (ANSYS® 

Meshing 12.1, ANSYS Inc., Canonsburg, PA) prior to solving Eqs. (2.6) and (2.23) for the flow 

field.  Commercial CFD software (ANSYS® Fluent v12.1, ANSYS Inc.) was used to approximate 

the equations of fluid motion in the absence of any turbulence model.  The geometric model 

consisted of three fluid regions: the inner flow (inlet tube and inner flow channels), an annular 
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fiber bundle, and the outer flow (an outer gap between the fiber bundle and housing and the outlet 

port); the heater was not included in the computational domain (see Figure 3.2). 

 
Figure 3.2: Computational Fluid Zones 
The figure illustrates the three fluid zones defined in the CFD model: inlet tube and inner flow 
channels; fiber bundle; outer flow gap and outlet port.  Inlet and outlet faces were defined normal 
to the inlet tube and outlet port, respectively.  The dotted surface represents the plane of 
symmetry, modeled using a slip condition. 
 

 

3.3. Boundary Conditions and Model Assumptions 

 CFD simulations were conducted for flow rates in the range 1.0–4.5 L/min.  A constant 

inlet velocity (in m/s) was prescribed by dividing the volumetric flow rate by the inlet cross-

sectional area (defined normal to the boundary), and a zeroed reference pressure at the outlet.  To 

reduce computational expense, a symmetry (slip) condition was assigned to the problem domain 

boundaries formed from bisecting the oxygenator along the device’s symmetric midline as 

implied by Figure 3.2, and a no-slip condition was assigned to all solid surfaces (Figure 3.2).  
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Further, gravitational effects were not included in the computational model; hence FB ≡ 0 in Eq. 

(2.23).  Simulations were performed assuming standard operating pressure (101325 Pa). 

 Blood was modeled as a Newtonian fluid with constant viscosity (3.3 cP) and density 

(1050 kg/m3) undergoing incompressible laminar flow.  The fiber membrane was treated as a 

lumped porous medium incorporated into the N.–S. equations as a single momentum sink 

according to the Ergun equation (2.24); the viscous and inertial permeability coefficients were 

defined using dp = do.  Due to the high packing density of the woven fiber bundle (45%), the 

permeability was assumed to be isotropic.39,40,42   

Fluent was executed using second-order spatial derivation approximations except for 

advective terms appearing in Eq. (2.23); these were treated with the usual first-order upwind 

procedure.  A convergence criterion of 10−4 for the continuity equation and velocity component 

recoupling iterations was employed in achieving a steady flow solution.  A summary of the 

boundary conditions and model parameters are listed in Table 3.1. 

Table 3.1: CFD Boundary Conditions and Model Parameters  

 Inlet Velocity 0.098–0.441 m/s 
Outlet Pressure 0 Pa 
Symmetrical Midline slip condition 
All Solid Surfaces u1 = u2 = u3 = 0 (no slip condition) 
Density, ρ 1050 kg/m3 
Viscosity, μ 0.0033 kg/m s (3.3 cP) 
Outer Fiber Diameter, do 0.0003 m 
Porosity, ε 0.45 
Permeability, k 1.8074E−10 m2 
Darcy Coefficient, α 150 
Inertial Loss Coefficient, β 3.5 

 

 
Note: Inlet velocities are defined as the volumetric flow rate divided by the inlet cross-sectional 
area; the outlet pressure is relative to the inlet.  Darcy and inertial loss coefficients are the 
conventional Ergun terms.54 
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3.4. Grid Function Convergence 

The grids used in this investigation were generated using unstructured 3-D 

tetrahedral/hybrid grid cells (see Figure 3.3).  Convergence tests of the numerical solutions were 

performed with six grid sizes ranging from 20K to 1.72M cells, using the grid with the highest 

resolution as the theoretical exact solution, denoted f (cf. Eq. 2.8).  The error between f and grid 

functions from coarser grids, f*, was quantified using a Euclidean norm composed of the 

dimensionless pressure drop, p*, and maximum velocity, u*, across the device; this norm was 

defined as 

 ‖e‖2 = �
1
𝑛
�� fi − f i

*�
2

n

i = 1

�

1
2

 , (3.1) 

where 𝒇∗ ≡ ( p*, u* )T; and n is number of grid cells.  Pressure and velocity components were 

made dimensionless by dividing by the dynamic pressure and inlet superficial velocity 

magnitude, Uinlet, respectively as 

 p* = 
∆p

1
2 ρUinlet

2
 , (3.2) 

and 

 u* = 
umax

Uinlet
 , (3.3) 

where umax is the maximum velocity within the device. 
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Figure 3.3: CFD Mesh 
The conformal mesh contains 1.72M elements and employs a symmetry boundary condition 
along the device’s vertical midline.  The grid color identifies the three fluid zones: inlet (green), 
fibers (gray), and outlet (blue). 
 

The error norms were fitted using a least-squares correlation, which characterized the 

convergence rate of the second-order numerical method as 1.69 (see Figure 3.4).  The grid with 

the highest resolution was selected for all data representation, where pressure drop and velocity 
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vectors for the finest mesh are estimated to be within an error band of 3.3% and 1.6% of the 

continuum values, respectively.  The numerical values used in the order of convergence 

calculations are listed in Table 3.2.  Although stronger measures of convergence could be 

obtained from point-wise truncation error analysis, large disparities between velocities in the 

porous media region of the device versus the non-porous regions (~102) would negate 

contributions of the velocity convergence in Eq. (3.1). 

 
Figure 3.4: Grid Function Convergence 
The order of convergence for the numerical studies is shown to be 1.69.  Each of the coarser grid 
functions were subtracted from the finest mesh (theoretical solution) and their errors are plotted 
above.  The pressure and velocity components of the mesh with the highest resolution were 
calculated to be within 3.3% and 1.6% of the continuum values, respectively. 
 

Table 3.2: Grid Function Convergence Values 

       
Elements  
(× 1000) Step Size, h Δp (kg/m s2) umax (m/s) p* u* error 

norm 
27 1.0 1649.5 0.967 3.363 4.933 0.582 
47 0.8 1670.3 0.954 3.494 4.866 0.679 
90 0.6 1691.7 1.030 3.032 5.256 0.258 

272 0.4 1749.9 1.050 3.022 5.355 0.198 
597 0.3 1761.6 1.074 2.908 5.479 0.079 

1720 0.2 1768.7 1.090 2.832 5.562  N/A 
 

 
© Cameron C. Jones 2012  
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4. BIPLANE DSA 
 
 
 
 
 
 
  
4.1. Experimental Setup 

 An important value to X-ray imaging analysis is that no modifications are required for the 

device in order to allow application of the technique (i.e., a “non-destructive” method).  Since 

most constituents of commercial membrane artificial lungs are polymer-based materials, X-rays 

can easily penetrate the device, providing a peek at the internal flow properties. In biplane 

angiography, synchronous X-ray sources and detectors are positioned in orthogonal planes to 

provide real-time 2-D flow information.  Further, the excellent spatio-temporal resolution of DSA 

is readily available in most clinical angiography suites.  These features therefore enable insight 

into characteristics of the fluid flow through the membrane oxygenator that can be compared 

directly with CFD predictions. 

 

4.1.1. Configuration of the X-ray System 

A conventional clinical X-ray system was used for acquiring experimental perfusion data 

due to its availability, high temporal resolution, and relatively inexpensive application.  Biplane 

DSA images were acquired by a Siemens Artis zee Biplane system (Siemens, Malvern, PA) at 7.5 

fps for a contrast-enhanced flow through the Affinity membrane oxygenator.  The oxygenator 

was oriented such that orthogonal X-ray acquisitions bisected the inlet flow channel in order to 

provide information regarding symmetry of the flow through the fiber membrane (see Figure 

4.10). 
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Figure 4.10: Experimental Setup of Biplane Projections 
Orthogonal biplane X-ray sources were configured to obtain image projections along the inlet 
tube at 7.5 fps. 
 

 

4.1.2. Configuration of the Fluid Circuit 

The bench circuit consisted of a 37% by weight aqueous-glycerin solution at 21°C 

(comparable to normal patient blood viscosity) and was circulated with a centrifugal pump 

(CentriMag®, Levitronix®, Zurich, Switzerland) at flow rates ranging 1.0–4.5 L/min as measured 

by a Transonic Systems bypass flow meter (HT110, Transonic Systems Inc., Ithaca, NY).  One 

hundred fifty milliliters of an iodinated contrast agent iohexol (Omnipaque™ 300 mgI/mL, GE 

Healthcare Inc., Waukesha, WI), diluted to a room temperature viscosity of 3.3 cP, was infused 

through an inline port 1 m upstream of the oxygenator inlet at the same flow rate as the bench 
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circuit.  Biplane images were acquired for 20 s to allow full visualization of the dye entering and 

leaving the device.  A summary of the study parameters are in Table 4.1. 

Table 4.1: Experiment Study Parameters 

  Flow Rate, Q 1.0–4.5 L/min 
Blood Analogue 37% w/v aqueous-glycerin solution 
Ambient Temperature 21°C 
Contrast Volume 150 mL 

 

 

 

4.2. Analysis of Angiographic Images 

All image analysis and post-processing was performed in MATLAB® (v.7.12 R2011a, 

The MathWorks, Inc., Natick, MA) using a custom code (pseudo-language algorithms are 

provided in Appendix C). 

 

4.2.1. Image Processing 

The study-generated DICOM image files were imported into MATLAB and the 

maximum background intensity (threshold) was subtracted from all subsequent images.  All pixel 

values above the threshold were assigned a value of 1; those below, a value of 0.  The binary 

images were then digitally rotated and cropped for proper spatial alignment with the 

complementary biplane projection using known markers on the oxygenator housing.  The spatial 

and temporal resolution was known to be 0.2 mm and 0.133 s, respectively. 

Prior to analyzing the flow field data, a median filter121 using the nearest 3 × 3 

neighboring points was used to reduce noise and preserve edges of the digital images for 

improved handling of the velocity estimates.122  In 2-D form, the median filter consists of an M × 

M window (M must be odd), where the median of the discrete sequence of elements replaces the 

middle value of the window.  Following spatial smoothing by the median filter, a flood-fill 
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operation was used to fill remaining “holes” in the contrast image.  These functions are illustrated 

in Figure 4.2. 

 
Figure 4.2: Image Processing Operations 
Prior to flow-field measurements, the image dataset undergoes several iterations of image 
smoothing.  Rough pixilations are smoothed with a median filter using a 3 × 3 pixel window, and 
a flood-fill operation is used to fill holes in the contrast medium.  Representative regions have 
been highlighted for clarity. 
 

 

4.2.2. Maximum Cross Correlation Method 

 Propagation of the contrast wave through the membrane was tracked using a maximum 

cross correlation (MCC) method, which identifies pattern-based correlations between two 

sequential time-dependent images.  Though the MCC method is a non-traditional application of 

X-ray image analysis, the method has been shown to be a reliable tool for assessing progression 

of flow.123–125  In this approach, a grid is mapped over the image at a time step, ti, dividing the 
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image projection into a series of templates.  For each template, a larger grid (referred to as the 

search window) is mapped in the subsequent X-ray image, ti+1; whereby the corresponding search 

window in ti+1 is large enough to encompass the maximum distance the flow might progress 

between sequential image frames (see Figure 4.3).  In a 2-D projection, each element in the 

resulting matrix contains a correlation value from −1.0 to 1.0 based on the degree of similarity 

between the image and the template features.  The normalized correlation coefficient matrix, C, is 

obtained by 

  C(v, w)= 
∑ ��I(x, y) − Iv̅, w�[T(x − v, y − w) − T�]�x, y

�∑ �I(x, y) − Iv̅, w�
2

x, y ∑ [T(x − v, y − w) − T�]2
x, y

 , (4.1) 

where the pixel values of the search window are I(x, y); Iv̅, w is the average value of  I(x, y) in the 

region under the template, T, positioned at v, w; and T�  is the average template value.126  The 

maximum value of the cross correlation matrix indicates the most probable likelihood of the 

template’s displacement, while the vector at each grid point is given by 

  c = 
�(v)2+(w)2

∆t
 , (4.2) 

and 

  θ = arctan �
w
v
�  , (4.3) 

where c is the velocity magnitude (in pixels/s); t is the time between sequential images (1/fps); 

and θ is the vector orientation. 
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A) B) 

  
  

C) D) 

   

Figure 4.3: Maximum Cross Correlation Function 
The MCC method identifies the most likely displacement between two successive ROIs 
according to the correlation of pattern-based geometries.  A) The red box indicates the template at 
time ti, centered at a specific grid point.  B) The flow field is advancing from left-to-right at 
position ti+1; the template from the previous time step is shown for reference and the entire field-
of-view characterizes the search window.  C) A correlation map portrays the correlation of the 
template (red box of ti) with the new flow field in ti+1.  D) The vector according to the maximum 
correlation is drawn for the given grid point. 
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4.2.3. MCC Filtering Algorithms 

The MCC method requires the user to define both template and search window sizes, 

with the only two conditions being: the search window encompasses the maximum distance the 

template would travel in a given time-step; and the template contains enough features to be 

distinguishable.  Therefore, it is no surprise that the values one chooses for template and search 

window boundaries can influence the final output.  Moreover, it is entirely likely that false 

positive correlations may exist, whereby the template corresponds better with a random structure 

of the flow field than with the true fluid movement. 

To reduce the subjectivity in defining template and search window sizes, iterations were 

run using rectangular template sizes ranging from 5 to 53 pixels per side (pps), and search 

window sizes ranging from 13 to 149 pps (recall, digital resolution is 5.333 pixels/mm).  For each 

template size, the average velocity in the fiber bundle calculated by each search window was 

averaged and is graphed in Figure 4.4, where the error bars indicate standard deviation between 

the averages computed by the different search windows.  As might be expected from a pattern-

based correlation method, larger templates will be more robust against false positives.  Indeed, as 

represented in Figure 4.4, increasing the template size led to more constant and consistent 

correlations.  The maximum template (53 pps) and search window (149 pps) sizes were used for 

the analysis in this study. 
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Figure 4.4: Convergence Testing of MCC Variables 
Two-dimensional contrast perfusion through the fiber bundle was discretized into hundreds of 
nodes with rectangular template sizes ranging from 5 to 53 pps defined at each node.  For a given 
template, different search windows ranging from 13 to 149 pps were used to define the 
boundaries of the correlation-based tracking algorithm.  Average velocity magnitudes in the fiber 
bundle from each of the search windows were themselves averaged and have been graphed in the 
figure above.  The error bars indicate standard deviation between the averages computed by the 
different search windows. 
 

Since it is possible that a template pattern may produce a high correlation with a random 

pattern in the following image, spatially incoherent vectors were filtered using various 

algorithms.  Resultant vectors in the inner flow channel, for example, clearly should not correlate 

with positions upstream of the flow field and were therefore removed.  Similarly, vectors with 

magnitudes that differed by more than 2 standard deviations from surrounding vectors were 

declared inaccurate.  Filtering rules such as these were run tangentially with the cross-correlation 

code such that if an erroneous vector was detected, the next highest correlation that was not in 

violation of one of the filters was accepted.  Finally, only vectors with a cross-correlation greater 

than 75% were included.  No interpolation scheme was employed; therefore, sparsities in the 

vector field do not indicate a region with no perfusion, but rather a nodal point for which no 

acceptable correlation was found. 
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4.2.4. Point Cloud Reconstruction 

The orthogonal biplane projections provide only limited insight into the 3-D flow 

properties (cf. §2.6.4.), but with reasonable assumptions, useful qualitative information may be 

obtained.  For each time step, the cumulative perfusion for both image projections was outlined 

by a 2-D boundary, which traced the outer edge of the fluid perfusion and the internal features of 

the oxygenator housing.  The boundaries were divided into horizontal slices with a thickness of 1 

pixel.  Pixels for each of the biplane projections served as the nodal points in a cubic spline 

interpolation—existing in the horizontal, or z-direction (see Figure 4.5).  The interpolant was 

constructed with a high resolution of points to help improve smoothing and reconstruction.   

For each point in the interpolant, its 3-D spatial position and normal component were 

stored in an N × 6 matrix, where N indicates the number of slices in a given time step.  Since the 

dye is assumed to be homogenously dispersed in the bulk fluid, and earlier imaging processing 

steps eliminated “holes” in the binary perfusion image, the maximum number of ‘ON’ pixels for 

each horizontal slice ranged from 1 to 6.  The resulting point cloud was exported to MeshLab 

(v.1.3.0, Visual Computing Lab, ISTI-CNR) which overlaid surfaces on the 3-D point set.  
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A) 

 
  
B) 

  

Figure 4.5: Biplane Image Interpolation Technique 
A) The interpolation algorithm required exactly 2 or 6 matching points between the two biplane 
projections for reconstruction of the interpolant.  B) Corresponding points from each horizontal 
row were used as vertices for the cubic spline interpolation existing in the z-plane. 
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4.2.5. Image Processing Assumptions 

As with all methods of contrast-enhanced flow, the contrast agent has been assumed to be 

homogenously dispersed throughout the transport fluid.  By ensuring the dye has approximately 

the same viscosity as the fluid medium and infusion rates match the superficial bulk velocity, this 

condition is usually satisfied. 

In both MCC and point-cloud reconstruction studies, the most significant requirement 

was to assume that the leading (or outer) edge of the dye was in the projected image plane.  Since 

densitometric images are integral projections, no information exists for through-plane velocities.  

However, based on the annular structure of the Affinity Oxygenator and the woven fiber bundle, 

the shortest flow path, when observing the device’s cross-section, would be direct lateral 

perfusion (i.e., radial perfusion).  This was confirmed by comparing the orthogonal biplane 

projections, which showed nearly identical densitometric profiles (discussed further in §5.2.3.).  

Furthermore, since the assumption of visually 2-D flow provided no details of through-plane flow 

movement, the binary images were defined to be in the bisecting image plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Cameron C. Jones 2012  
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5. EVALUATION OF EXPERIMENTAL DATA 
 
 
 
 
 
 
 
5.1. Experimental Pressure Drop 

Pressure was measured multiple times (n = 3) for each flow rate using a TruWave 

transducer kit (Edwards LifeSciences, Irvine, CA) connected to a full-bridge module (NI-9237, 

National Instruments, Austin, TX) on a CompactDAQ chassis (NI cDAQ-9172, National 

Instruments), and recorded using LabVIEW™ (v.8.6, National Instruments).  The pressure drop 

across the heat exchanger constituted a significant portion of the total pressure drop of the device, 

as shown in Figure 5.1.  The combined resistance from both components of the device (heat 

exchanger and fiber bundle) will affect parameters such as shear stresses and device-induced 

platelet activation, but only the pressure losses imparted by the fiber bundle determine the 

permeability through the fibrous medium.  Since no sites existed between the integrated heat 

exchanger and fiber bundle, and separating the two units would likely cause unintended flow 

disturbances upstream of the fiber bundle.  Therefore, the pressure losses contributed by the fiber 

bundle in the Affinity Oxygenator were calculated by subtracting the pressure drop across the 

integrated heat exchanger from the overall pressure drop of the device for each volumetric flow 

rate. 



www.manaraa.com
57 

 

 
Figure 5.1: Experimental Pressure Drop across Device Components 
The pressure drop across the Affinity Oxygenator is a sum of the losses contributed by the fiber 
bundle and the integrated heat exchanger.  Device resistance was measured for flow rates ranging 
from 1.0 to 4.5 L/min for a Newtonian blood-analogue with a viscosity of 3.3 cP. 
 

 

5.2. Experimental Perfusion Characteristics 

Typically, flow through porous media is precluded from analysis via optical methods due 

to the opacity of either the solid volume fraction or the fluid media, or both.  Without domain-

specific experimental data, information regarding internal perfusion characteristics is limited to 

general assumptions.  For example, the superficial velocity is determined analytically based on 

volumetric flow rate, and therefore assumes a uniform (or homogeneous) flow distribution.  

However, since the physical velocity is now available from experimental X-ray acquisitions, a 

more accurate assessment of permeability can be made, accounting for potentially non-uniform 

perfusion. 
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5.2.1. Modified Residence Time 

Most studies that investigate fluid flow through fibrous media derive permeability 

equations based on the assumption that all fibers are aligned (oriented either parallel or 

perpendicular to the flow direction) and experience a uniform flow field.60  Following this 

condition of a uniform, radial flow through the fiber bundle, the average fluid residence time, tR, 

is simply 

 tR = 
∆x
U�p

 , (5.1) 

where Δx is the fiber bundle thickness; and U�p is the average physical velocity.  Yet, if the flow is 

not entirely radial in propagation, U�p cannot be assumed to be equal to its analytical value (Eq. 

2.27), and therefore tR remains unknown. 

To account for potentially non-uniform perfusion, a modified residence time, tR', based 

on peak-to-peak transit time,100 is expressed as 

 tR' = TN − TI , (5.2) 

where TN is defined as the moment of peak intensity along the outer edge of the fiber bundle; and 

TI is the time of peak intensity when contrast first enters the fiber bundle (Figure 5.2). 
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Figure 5.2: Modified Residence Time according to Time-Density Analysis 
The normalized contrast intensity curves characterize the time delay between ROIs defined at the 
inner and outer surfaces of the annular fiber bundle.  Curves from the 2 L/min (dashed line) and 
4.5 L/min (solid line) flow studies are represented above.  Higher volumetric flow rates led to a 
faster up-stroke, less convective dispersion, and shorter residence time.  Image acquisition was 
7.5 fps. 
 

The description of tR' in Eq. (5.2) is effectively a time-density calculation for two ROIs 

defined at the inner and outer edges of the fiber bundle (cf. §2.6.3.).  For the analytical 

measurements, tR is significantly longer than the observed experimental data, which necessitated 

the definition of tR' in Eq. (5.2).  This is exemplified in Table 5.1. 

Table 5.1: Calculated Residence Times 

   Q (L/min) tR (s) tR' (s) 
1.0 8.65 6.53 
2.0 4.32 2.73 
3.0 2.88 1.87 
4.5 1.92 1.27 
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5.2.2. Experimental and Analytical Fiber Bundle Velocities 

Given tR', the experimental superficial velocity, U', was calculated by 

 U' = εU�p' = 
ε∆x
tR'

  , (5.3) 

where U�p'  is the average physical velocity calculated from the time-density analysis.  The 

differences between the analytical (Eq. 2.15) and experimental (Eq. 5.3) evaluations of U are 

shown in Table 5.2.  As would be expected, both U and U′ are linearly proportional to the 

volumetric flow rate. 

Table 5.2: Analytical and Experimental Superficial Velocities 

   Q (L/min) U (mm/s) U′ (mm/s) 
1.0 1.16 1.53 
2.0 2.31 3.66 
3.0 3.47 5.35 
4.5 5.20 7.90 

 

 

 

5.2.3. Assessment of Perfusion Direction 

The progression of the contrast-enhanced flow through the device at 2 L/min is shown in 

Figure 5.3.  Once the DICOM images had been converted to binary images and spatially 

smoothed, the cumulative perfusion from previous images was subtracted from each new image, 

revealing only the net new flow for the given time step (i.e., the current location of the advancing 

contrast bolus).  Flow travels up the inlet tube (Frames 1–3), into the tapering channels (Frame 5), 

through the fiber bundle (Frames 5–23), into the outer gap (Frame 19), and exits through the 

outlet port (bottom left of image, Frames 21–23). 
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Figure 5.3: Progression of Contrast Perfusion through the Fiber Bundle 
The image sequence shows the perfusion of the contrast bolus through the device at 2 L/min flow 
rate.  The device inlet is located at the bottom center of the image frame (see Figure 3.2), and the 
outlet is positioned at the bottom left.  Images were acquired at 7.5 fps.  For clarity, every second 
image in the dataset was omitted in the display above.  
 

Design of the flow channels along with packing density of the fibrous media contributes 

to the mostly radial perfusion dynamics of the fluid flow.  For all of the flow rates tested, no 

preferential flow was observed due to the position of the outlet port.  However, the progression of 

the contrast wave front is not fully uniform, as is characterized by the uneven distribution of the 

waveform in the vertical direction.  This image series indicates that flow reaches the corners of 

the device less readily (see specifically Frames 17–23), including the corner closest to the outlet 

of the device.  For the 2 L/min flow rate, most of the flow traveled through the bundle in 

approximately 2.5 s (Frames 5–23)—visually reflective of tR' calculated in §5.2.1. 
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The construction of tR' is based on a 1-D calculation which has the benefit of allowing the 

measurement to be partially invariant to non-uniform perfusion contours.  In the annular fiber 

bundle of the Affinity Oxygenator, if flow was indeed single-dimensional (viz., purely radial 

flow) the average distance traveled by the contrast bolus in each image frame could be used to 

calculate U�p', as opposed to the time-density techniques employed in Eq. (5.1).  Therefore, it 

might be logical to infer that deviations between the two measurements could yield information 

regarding the degree of radial perfusion. 

Calculations of the average contrast perfusion advancing through the fiber membrane 

began once all of the dye had cleared the inner flow channels and was entirely contained in the 

fiber bed.  For each orthogonal projection, the left and right-side contrast waveforms were treated 

as separate measurements.  The pixel sum of the contrast in each segment was divided by the 

vertical height of the fiber bundle to give the average thickness of the waveform if it were 

compressed to a uniform surface.  The physical velocity using the uniform perfusion method 

�U�p''� was averaged for the duration where all of the flow existed in the fiber bundle.  Once the 

perfusion edge reached the outer gap, the measurement was terminated.  The averages and 

standard deviations of the waveforms for each of the flow rates are shown in Table 5.3.  In all 

cases, U�p'' was higher than U�p' which would suggest a perfusion waveform that is advancing with 

deflections from purely radial flow.  The percent of the flow that moves in a radial fashion is 

obtained from the ratio between the two measurements. 
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Table 5.3: Assessment of Radial Perfusion 

      Q (L/min) U�p' (mm/s) U�p'' (mm/s) U�p' / U�p'' (%) 
1.0 3.40 4.35 ± 0.00 78.2% 
2.0 8.13 9.13 ± 0.11 89.1% 
3.0 11.88 12.63 ± 0.03 94.1% 
4.5 17.55 19.07 ± 0.12 92.0% 

 

 

 

5.2.4. 3-D Perfusion Reconstruction 

In addition to providing insight into the 2-D flow through the fiber bundle, the symmetry 

between each of the outward perfusion waveforms (n = 4) in orthogonal planes offers information 

regarding the 3-D flow field.  However, 3-D reconstruction of the biplane dataset was 

unobtainable using conventional methods such as iterative processing, curve fitting, or 

stereographic methods due to the dimensions of the fiber bundle and the volume of contrast agent 

required to maintain a continuous contrast bolus in the presence of fluid dispersion.  In the 4 

studies, the average maximum depth measurable according to gray-level pixel values (i.e., before 

binary image conversion) was 22 ± 7.0 mm.  This limitation clips the dataset, illustrated in Figure 

5.4, thereby yielding no depth information above the maximum gray-level intensity. 
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Figure 5.4: Data-Clipping resulting from Maximum Contrast Intensity 
Line profiles taken across the inlet tube (z = 15) and through the fiber bundle (z = 415) illustrate 
the limitation arising from a maximum contrast intensity.  For the z-plane across the inlet tube 
diameter (15 mm) the cumulative contrast projection is fully characterized by the elliptical 
intensity curve.  Alternatively, the z-plane through the base of the oxygenator housing (diameter 
is 82 mm) the maximum opacity of the contrast precludes any depth information.  In the figure 
above, the contrast line integrals are displayed at 0.93-s intervals. 
 

The qualitative symmetry observed between the biplane projections justified the 

approximation of a radial perfusion contour.  The outer edge of the contrast bolus in each aligned 

biplane projection was assumed to be smoothly distributed in the non-orthogonal, z-plane 

dimension, and the known 3-D position of the device housing was subtracted from the contrast 

perfusion.  Thus, for each row in the aligned projections, the algorithm required exactly two or 

six reference nodes (see Figure 4.5).  Due to the number of assumptions embedded in this 

formulation, the 3-D volumetric perfusion remains only qualitative.  Nevertheless, since the 
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algorithm interpolates in the non-orthogonal depth of field, the 3-D visualization maintains the 

same level of quantitative accuracy as the 2-D biplane images, but provides improved spatial 

clarity to the overall perfusion dynamics (see Figure 5.5). 

 
Figure 5.5: Three-Dimensional Volumetric Perfusion at 2 L/min 
The outer edge of the biplane projections served as a set of vertices for the generation of a cubic 
spline in the z-direction.  Each spline corresponded to a different slice in the z-plane, whose 
interpolated values were used to construct a point cloud in 3D.  Surfaces were rendered over the 
point set to give clarity to the volumetric perfusion. 
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5.3. Permeability Results 

In order to compare these results with the empirical results of Ergun54, Leva55, and 

others71,77, dp—whose definition has been somewhat ambiguous (cf. §2.4.6.)—must first be 

quantified. 

 

5.3.1. Equivalent Spherical Diameter 

The coefficients a and b in Eq. (2.20) were obtained from fitting a second-order 

polynomial to the experimental pressure drop and superficial velocity data.  Using the modified 

Ergun coefficients determined by Macdonald et al.71 (α = 180, β = 1.8–4.0), dp was approximated 

from Eq. (2.21) as 

 dp' ≅ 
29
25

do ≈ do , (5.4) 

where dp'  is the experimental spherical diameter; and corresponds to an inertial coefficient β = 

2.4 (from Eq. 2.22).  The viscous and inertial coefficients from the referenced empirical data have 

been shown alongside those found in this study (see Table 5.4). 

Table 5.4: Referenced and Experimental Ergun Coefficients 

   
 α β 

Ergun54 150 1.75 
Macdonald et al.71 (low) 180 1.8 
Macdonald et al.71 (high) 180 4.0 
Leva55 200 1.75 
Experimental Data 180 2.4 

 

 

 

5.3.2. Analysis of Empirical Coefficients 

The permeability of the fiber bundle according to the pressure losses measured across the 

device and the superficial velocities derived from U�p'' are shown in Figure 5.6.  For reference, the 

permeability calculated using the empirical coefficients of Ergun54, Leva55, and the range by 
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Macdonald et al.71 have also been graphed.  The measured permeability of the device corresponds 

well with the data of Leva and the lower permeability range determined by Macdonald et al., 

though the experimental data showed lower permeability and greater inertial resistance than those 

of the conventional Ergun coefficients.  Nevertheless, experimental permeability measurements 

were relatively consistent with the empirical data, which would be expected based on the 

agreements typically seen in CFD simulations.29,30,37–42 

 

Figure 5.6: Fiber Bundle Permeability 
Pressure losses calculated using the empirical Ergun coefficients of Macdonald et al.71, Leva55, 
and Ergun54 have been plotted alongside the experimental pressure measurements (dashed line) 
according to the experimental superficial velocity. 
 

 

5.4. Discussion 

Validation of the numerical flow simulations require assessments of the fiber bundle 

permeability to be accurately characterized.  Early empirical studies laid the foundation for 

today’s understanding of the viscous and inertial forces influencing flow through porous media.  
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For slow flows, the Darcy permeability describes resistance (i.e., pressure losses) to flow in a 

linear relationship to the superficial velocity.  As the velocity increases, momentum carries fluid 

particles away from their streamlines and the inertial effects result in an increased flow resistance.   

Conventionally, permeability is characterized by the pressure losses corresponding to the 

superficial velocity.  Yet, the superficial velocity does not explicitly describe the features of the 

porous medium, including the porosity and packing arrangement.  In fact, U is prescribed with 

ε ≡ 0, therefore U portrays the volumetric flow rate as a uniform velocity field through the device.  

When the porosity of the fluid zone is either randomly or isotropically distributed, and if the 

container is large enough such that wall effects are negligible, a uniform superficial velocity is 

generally an acceptable assumption.  Yet, when perfusion is non-uniform or εeff ≠ ε , other 

measures are required. 

For the investigation above, the motivation for defining U based on tR' was due to the 

observed non-uniformity of the velocity wavefront in the imaging acquisitions.  Since the 

angiographic images had been reduced to a binary flow field, the single-dimensional 

approximation of the time-density method was valid for ROIs defined at the entry and exit 

regions of the fiber bundle (cf. §2.6.3.).  The only requirement of tR' is that the fluid perfusion is 

rotationally symmetric; this was verified according to the similarities of the fluid propagation in 

the orthogonal projections (Table 5.3). 

In order to determine the degree of radial perfusion throughout the fiber bundle, a ratio 

was established between the experimentally-derived physical fluid velocity and the average 

thickness of the contrast bolus per time step.  The method showed that as the flow rate increased, 

the experimental velocity approached the velocity of the net new contrast in each image frame.  

This may suggest that at higher flow rates (e.g., Q ≥ 2.0 L/min), the velocity direction through the 

fiber bundle in the Affinity Oxygenator travels predominantly in a radial fashion. 

© Cameron C. Jones 2012  
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6. EVALUATION OF NUMERICAL DATA 
 
 
 
 
 
 
 
6.1. Flow Characteristics 

The results from the CFD simulations correlated very well with the numerical data 

obtained by Zhang et al. for a 5 L/min inlet flow rate through the Affinity Oxygenator.40  The 

pressure distribution and flow characteristics from the numerical predictions were proportionally 

consistent for all inlet velocities tested.  In the following sections, all visualizations will be 

represented by a clinically relevant 2 L/min flow rate.  Perfusion through the device is depicted 

by the pathlines illustrated in Figure 6.1.  Blood flows up the inlet tube and reverses direction in 

the inner flow channels.  The tapered channels provide no resistance to the flow, which allows the 

blood flow to fill the entire inner radius of the fiber bundle.  The pathlines generated in the CFD 

simulations show that the flow through the fiber bundle is mostly radial, and the position of the 

outlet port does not appear to influence the perfusion of the flow more favorably towards the 

device outlet.  This was consistent with the DSA perfusion profiles, whereby the orientation of 

the outlet port did not affect the uniformity of the radial distribution for any of the flow rates 

ranging 1–4.5 L/min. 
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Figure 6.1: CFD Pathlines of Fluid Flow 
Three-dimensional pathlines through the fiber bundle are shown according to velocity magnitude 
(at 2 L/min).  The pathlines illustrate flow through the inlet tube (bottom-middle of figure), 
reversal of direction in the inner channels, and radial perfusion through the fiber bundle.  Once 
flow reaches the outer gap it circulates towards the device outlet (bottom-left). 
 

Once the blood flow has permeated through the fiber bundle, it is collected in an outer 

gap (3 mm thickness) and circulates to the outlet port.  Upon exiting the device, the flow speed is 

accelerated, as depicted by the reference colorbar. 

 

6.2. Pressure Distribution 

The CFD pressure distribution across the device characterizes a concentrically uniform 

pressure gradient throughout the fiber bundle (Figure 6.2).  Most of the pressure losses across the 
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device are due to viscous and kinetic forces in the fiber bundle, as the pressure in the inlet tube 

and outer gap are relatively uniform.  The outer gap facilitates the circumferentially uniform flow 

pattern since the pressure is approximately equal in the spacing between the fiber bundle and 

device housing. The concentric pressure gradients account for the even radial perfusion seen in 

the bench studies (cf. §5.2.3.). 

 
Figure 6.2: CFD Device Pressure Drop 
The bulk of the resistance downstream of the integrated heater occurs across the fiber bundle and 
is characterized by a concentric pressure gradient through the annular fiber bundle.  The figure 
represents the pressure drop for a 2 L/min volumetric flow rate. 
 

 

 



www.manaraa.com
72 

 

6.3. Velocity Profile 

The magnitude of the velocity vectors through the fiber bundle cross-section and outer 

gap is shown in Figure 6.3.  The image cross-section was obtained from the middle of the fiber 

bundle height.  The vectors indicate a highly radial flow direction, correlating well with the 

concentric pressure contours from Figure 6.2.  As flow enters the fiber bundle (radial–outward), 

small eddies are seen behind the support columns of the inlet tube, but recover within the first few 

millimeters of the fiber bundle.  Once through the fiber bed, flow is collected in the outer gap and 

accelerates towards the outlet port (orientated at the top of the image). 

 
Figure 6.3: CFD Velocity Vectors on Fiber Bundle Cross-Section 
Velocity vectors in the fiber bundle (physical velocity) and outer gap at 2 L/min.  Vectors have 
been prescribed with uniform length, where the magnitude is indicated by the reference colorbar.  
Cross-section was at 50% of the fiber bundle height. 
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The computational and experimental (MCC) velocity vectors for corresponding planes 

are shown in Figure 6.4.  Both images display physical velocities; where the magnitude in the 

CFD image is characterized by a color scale, and the MCC vector magnitudes according to its 

vector length. Five representative points have been taken to compare the two measurements: two 

sampled in the open channels of the device, and three points from various sites within the fiber 

bundle.  The vector magnitudes in the MCC figure are the averages of nine vector magnitudes 

(center plus eight-nearest grid points) surrounding the sample location in the corresponding CFD 

image. 

In portions of the device preceding the fiber bundle (inlet tube and inner flow channels), 

the velocity values calculated for the 2 L/min flow by the CFD and MCC methods are 

comparable.  However, in the fiber bundle, where the Ergun approximation was utilized to 

characterize the fiber membrane, the CFD velocity measurements severely underestimated the 

experimental velocity, and approximated values consistent with the analytical values of U.   
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Figure 6.4: Numerical and Experimental Velocity Vectors at 2 L/min 
The velocity vectors calculated by the CFD study upstream of the fiber bundle are consistent with 
those measured with the MCC technique.  Yet, according to the porous media assumption, the 
numerical analytic studies significantly under-predicted the velocity within the fiber bundle. 
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6.4. Improvements to the Numerical Models 

The numerical studies correlated well with the experimental data in the portions of the 

device preceding the fiber bundle.  However, the porous media approximation significantly 

under-predicted the velocities in the fiber bundle.  Observing that the discrepancy between the 

numerical and experimental data was confined to the fiber bundle, specifically U�p  < U�p'' , a 

scaling factor was added to modify the fiber bundle characteristics.  Therefore, in order to fit the 

numerical solutions to the experimental data and account for the non-uniform flow behavior, a 

scaling factor, ω, defined as the ratio between the experimental uniform physical velocity and the 

analytical physical velocity, was defined as 

 ω = 
U�p'' 
U�p

 , (6.1) 

and 

 U = 
ε
ω

U�p''  . (6.2) 

For the 1–4.5 L/min studies, ω was calculated to be 1.69 ± 0.06.  CFD simulations were re-run 

with a prescribed porosity of 0.27 (ε/ω), while using the same permeability and inertial 

coefficients previously determined.  The magnitudes of experimental MCC velocity vectors, 

along with the numerical results calculated using both the analytical porosity and the modified 

porosity are listed in Table 6.1. 
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Table 6.1: Referenced Physical Velocity Values from Experimental and Numerical 
Studies 

       
Q (L/min) 

U�p  (mm/s) at References Sites in Figure 6.4 
 Fiber 1 Fiber 2 Fiber 3 Inlet Channel 
 

1.0 
4.4 5.2 5.4 127.0 72.8 Experimental 
2.7 2.5 2.9 141.0 75.0 CFD, ε = 0.45 
4.8 4.2 4.9 140.0 76.0 CFD, ε/ω = 0.27 

2.0 
9.2 8.3 10.9 235.4 124.3 

 5.4 5.0 5.8 258.5 148.5 … 
9.5 8.6 9.9 258.5 148.5 

 
3.0 

14.2 13.6 14.8 281.5 241.6 
 8.2 12.4 9.0 374.4 241.8 
 14.0 12.6 15.5 374.4 241.8 
 

4.5 
21.6 19.6 24.7 523.9 365.5 

 12.3 11.1 13.8 552.0 336.0 
 21.0 19.0 24.0 539.0 341.0 
 

 

 

 

The average absolute difference in the fiber region between the existing and modified numerical 

techniques improved from 44 ± 4% to 6 ± 5%.  At the same time, the modification did not affect 

the absolute difference in the non-porous zones; both simulations resulted in 11 ± 11% absolute 

differences in experimental and numerical calculations.  This is further illustrated in Figure 6.5. 
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Figure 6.5: Absolute Difference between Experiment and Numerical Velocity Values 
The modified porosity factor decreased the average difference between CFD and experimental 
(MCC) velocity values in the fiber bundle region of the device from 44 ± 4% to 6 ± 5%.  No 
change was observed in the regions preceding the fiber bundle (i.e., non-porous media zone). 
 

 The modified porosity does not significantly affect the computed pressure losses as 

shown in Figure 6.6.  At lower flow rates (1–3 L/min), the numerical data under-predicted the 

fiber bundle resistance, while simulations employing dp' obtained the closest correlation to 

experimental pressure drop.  Use of the Ergun terms with dp = do were similar to the results from 

dp', as expected.  The figure also indicates, for global pressure losses, the model using Ergun 

terms according to the fiber hydraulic radius (Eq. 2.25) calculated a much lower fiber bundle 

resistance than shown experimentally. 
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Figure 6.6: Evaluation of Numerical Parameters 
Comparison of the pressure losses calculated using the empirical Ergun coefficients, varying 
values for dp and ε. 
 
 
 

6.5. Discussion 

The porous media model functions as an added momentum sink in the governing 

momentum equations according to an empirically determined flow resistance.  Since the solid 

fraction of the porous medium (viz., the fibers themselves) is not physically represented in the 

CFD model, steady-state simulations of single-phase flow through isotropic porous media using 

numerical solvers such as ANSYS Fluent perform calculations according to the analytical 

superficial velocity, and effectively, incorporate the porosity during post-processing.70   

Overall, the model captured the perfusion dynamics reasonably well when compared with 

the experimental X-ray image sequence.  The radial flow behavior was reproduced numerically 

and the computed global pressure losses agreed with measured values.  However, the magnitude 

of the velocity vectors was significantly under-predicted in the computational studies.  Although 

this condition is usually present at higher Re, the various assumptions traditionally employed in 



www.manaraa.com
79 

 

calculations of blood flow through membrane devices may result in similar errors.  In fact, it can 

be shown that pressure fields computed in this way are least accurate at low Re.46  

Since the construction of ε/ω improved correlation between experimental and CFD 

studies, the lower values originally obtained from the numerical studies could be explained by 

factors that affect the porosity and/or the physical velocity.  A lower porosity could be reflective 

of flow channeling (shunt) in the fiber bundle or the condition of εeff << ε; though the latter is less 

likely at higher flow rates.  Woven fiber bundles and greater membrane rigidity result in more 

homogeneous structures, but high blood-side pressures could lead to compressibility of the 

porous media and deformation of the fiber bundle.127  Thus, when permeability is defined 

according to porosity and other analytical parameters, it is unaffected by the level of fiber bundle 

compressibility or fiber orientation.60,61,68,128,129 

By introducing a scaling factor into the porosity value, the average absolute difference 

between the experimental and numerical velocities was reduced from 44% to 6%, without 

affecting the pressure calculations or radial flow behavior.  Due to the formulation of the porous 

media model, maintaining the empirical permeability and inertial coefficients, while prescribing a 

reduction in void space, equates to a higher velocity magnitude, yet unchanged pressure 

distributions and perfusion characteristics.  The correction therefore does not influence 

computation of the overall conservation equations, but acts as a further post-processing step.  

However, this modification has not been tested in simulations that incorporate porosity into the 

conservation equations, such as multiphase and reaction models. 

Although directly modeling individual fibers in a large-scale 3-D model is impractical 

with present-day computing, little work has been done to evaluate the validity of the porous 

media approximation outside of overall pressure contours.  Recently, Mazaheri and Ahmadi 

simulated 2-D fluid flow through a membrane oxygenator with 60% porosity at 4 L/min and 

compared the porous media assumption with a model of individual fibers.  This study showed that 

the porous media model did not accurately characterize the non-uniform flow distribution.39  
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Interestingly, their results indicated nearly a six-fold increase in velocity magnitude when using 

the porous media approximation when compared to the direct fiber modeling;39 this is opposite 

what was shown here, experimentally, possibly due to restrictions in 2-D modeling. 

When comparing blood flow velocities between the numerical approximations and 

experimental data, it is important to recognize that the velocities observed experimentally are the 

physical fluid velocities.  Yet, most studies that characterize CFD flow properties in the fiber 

bundle report the superficial velocity (which does not account for fiber bundle porosity).  For 

example, Funakubo et al. reported velocity values approximately 2–6 mm/s for a 3 L/min flow 

rate through a fiber bundle with 40% porosity.30  Likewise, at 5 L/min volumetric flow through a 

25% porous fiber bundle, Sato et al. determined fiber membrane velocities ranging 7–8 mm/s.41  

Similarly, Zhang et al. calculated velocities of 5–6 mm/s for a 5 L/min flow through a fiber 

bundle with 45% porosity.40  However, without distinguishing between superficial and physical 

velocities, there exists the potential for misinterpretation of the data.  For instance, according to 

the work by Gartner et al., which correlated thrombus deposition in a fiber membrane with low 

CFD velocity values29, assertions regarding a minimum flow speed “threshold” are significantly 

different if determined based on the superficial, versus the physical, velocity.  

The experimental velocities were measured using a cross-correlation method based on 

binary patterns between sequential image frames.  Unfortunately, the MCC technique in its 

simplest construction does possess a degree of subjectivity in regards to definitions of the 

template and search window sizes, and is therefore commonly validated with other forms of 

measurement—such as thermal imaging.  However, in these previous studies, supplemental 

experimental data were required because efforts to identify a non-subjective means for 

establishing correlation cut-off values were not identified.124  Alternatively, the convergence tests 

and approach performed in §4.2.3. have likely reduced user biases. 

 
© Cameron C. Jones 2012  
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7. APPLICATIONS AND LIMITATIONS 
 
 
 
 
 
 
 

Results from the biplane DSA study revealed a non-uniform perfusion profile and significantly 

higher fluid velocities than previously shown with traditional numerical models.  These findings 

and the techniques developed in this body of work extend to numerous applications and study 

principles.  Some of these are addressed below, followed by a brief discussion on the limitations 

of the study protocol. 

 

7.1. Clinical Impact 

Blood permeating through the fiber bundle experiences varying levels of shear stress due 

to the complex flow paths around the outer surfaces of the fibers.  For incompressible flow, Cook 

et al.130 presented a root-mean-square average shear stress ,  τ̅, for flow through any porous 

medium as 

  τ̅  = �
μ∆pQ

Vv
 . (7.1) 

For Newtonian approximations of blood, the shear rate, γ̇, is directly proportional to shear stress 

by the fluid viscosity: 

 γ ̇ = 
τ̅
μ

 . (7.2) 

Both  τ̅  and γ̇  are important parameters in evaluating device-imparted blood trauma such as 

platelet and leukocyte activation130–132, thrombosis132–134, hemolysis135, and interactions between 

cellular constituents136,137.  These values, along with Rei (according to U�p' and dp') have been 

reported in Table 7.1 for all flow rates tested.  
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Table 7.1: Reynolds Number, Shear Stress and Shear Rate 

    Q (L/min) Rei 𝜏̅ (dyne/cm2) 𝛾̇ (s−1) 
1.0 0.39 5.89 178.5 
2.0 0.83 12.64 383.1 
3.0 1.15 20.17 611.2 
4.5 1.73 32.79 993.7 

 

 

The development of thrombosis in membrane oxygenators is a serious complication 

which results in decreased gas exchange efficiency and increased device resistance.  Both 

intrinsic design characteristics and extrinsic (or systemic) factors contribute to the formation of 

thrombotic deposition; however, the exact mechanisms remain unclear.  Studies by Goodman et 

al. suggest that a combination of surface and flow properties contribute to the initiation of 

thrombus formation, whereas thrombus growth is primarily a function of the flow dynamics.134  

Runyon et al. showed that surface-bound inhibitors play a significant role in regulating clotting 

propagation in structures with small volume-to-surface ratios, but were less effective in large 

volume-to-surface channels where shear forces became the dominant factor; though these results 

may be system-dependent.133  Alternatively, thrombosis may be initiated by circulating emboli 

(e.g., atherosclerotic debris, calcium, air, fat, platelet thrombi, etc.) that become trapped in the 

fiber bundle and physically alter the normal fluid path creating pockets or areas of stagnancy.138  

Thus, the fluid dynamics of the system play a critical role in thrombus development and growth. 

Some of the most frequently correlated properties of fluid flow with thrombotic sites are 

recirculation, low blood flow/mass flux, and low shear rates.29,133,134,139  Gartner et al. created 

frequency maps of clinical thrombotic deposition in a fiber bundle cross-section and observed an 

association between sites of thrombosis and low blood velocities predicted by numerical studies.  

Without making specific claims, they postulated that thrombosis deposition maps, correlated with 

CFD simulations of blood flow, could be used to prescribe a critical thrombosis threshold, say 4 

cm/s.29   
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Similarly, Rayz et al. noticed a strong similarity between slow-flow regions predicted by 

CFD simulations and intracranial aneurysm thrombosis in vivo, and concluded that areas of low 

velocities and low wall shear stress are particularly prone to thrombus formation.  Though careful 

not to assert that flow stagnation is the primary cause of thrombus formation (otherwise clotting 

would immediately form in the smaller arterioles, capillaries, and veins), the numerical 

simulations employed a minimum velocity threshold of 10% of the normal velocities observed in 

the proximal and distal vessels (approximately 1.5–2.5 cm/s) as a metric for thrombus 

development.139 

Since a clinically relevant threshold value has not yet been described, numerical 

simulations could be useful in defining (or at least, qualifying) such a value.  However, it has now 

been shown that the scale of these numerical approximations in fiber bundles is inaccurate.  The 

techniques developed through a simple X-ray imaging system provide a more realistic measure of 

the physical velocity through membranous devices and can be used to improve numerical results. 

Compatibility of membrane oxygenators in the extracorporeal circuit have been shown to 

be more favorable with modified fiber surfaces (e.g., heparin-coated).32  Yet, studies by Lehle et 

al. reveal that despite heparin-coatings or continuous low-dose anticoagulant infusions, about 

10% of membrane oxygenator failures are due to thrombotic deposits in the blood path.24  Once 

thrombosis has initiated, the clot itself becomes the greatest initiator for further thrombus 

development.  In addition to posing significant risk to the patient from potential thromboemboli, 

thrombus growth alters the natural fluid dynamics of the device, further augmenting thrombotic 

deposition.  The experimental techniques developed in this research effort, while useful for 

evaluating characteristics such as low velocity, recirculation sites (eddies), local mass flux, and 

the effects of gravitational orientation, would also allow investigation into the fluid dynamics post 

thrombus development.  Since X-ray DSA angiography requires very low-dose X-ray exposure, 

the extent and dynamics between blood flow and thrombotic deposition can be assessed in situ. 
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The series of angiographic image projections shows the central region of the fiber bundle 

experiencing higher flow velocities, with the corners of the device being perfused less readily—

sites that may be prone to thrombus formation following extended use.  If thrombosis develops, 

the physical characteristics of the altered flow field could easily be obtained with X-ray DSA 

methods.  Assessing patterns of thrombus development would allow a direct correlation between 

convective flux and fluid velocities observed experimentally.  Further investigation is required to 

compare oxygenator flow characteristics with clinical endpoints such as thrombus deposition. 

 

7.2. Application for Improving Device Performance 

One of the most important design features of an artificial lung is uniform flow perfusion.  

Flow path inhomogeneities can lead to stagnant blood flow and thrombosis, and flow shunts 

reduce efficiency of the device.  Although studies that analyze flow around individual fibers are 

useful for assessing optimal packing arrangements based on local mass transfer, fiber resistance, 

and shear stresses73,140,141, these results do not translate into global perfusion dynamics such as 

geometrically-induced eddies or regional mass flux.  Furthermore, most CFD applications in 

membrane devices investigate steady-state conditions such as pressure distribution and velocity 

fields, which are useful for predicting overall device-imparted blood trauma and relative 

perfusion behavior; though, much information could be gained from an investigation into the 

transient nature of the blood as it enters and leaves the device. 

Studies like those performed by Funakubo et al. and Asakawa et al., in which a series of 

design constraints are tested, could benefit greatly from a transient visualization of deoxygenated 

blood as it enters the device rather than inferring a uniform distribution from pressure 

contours.30,38  Similarly, Graefe et al. attempted to optimize flow uniformity by testing various 

inlet and outlet port designs according to particle residence time, but this approach yields no 

information regarding the distribution of flow in the fiber bed.36  Others, like Hirano et al., have 

experimentally investigated the time-dependent blood perfusion in a fiber membrane in attempt to 
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improve flow uniformity through the measurement of changes in electrical potential across 

electrodes arranged in the fiber bundle, but the spatial resolution was limited and the technique 

required physical (destructive) alterations to the oxygenator for analysis.52 

The insight gained from of a transient investigation of fluid flow extends to other 

membranous devices as well.  For example, hollow-fiber hemodialyzers are designed to achieve 

uniform flow distribution in order to eliminate significant blood-to-dialysate flow mismatches, 

and optimize diffusion efficiency.43,44  With the experimental protocols established using biplane 

X-ray DSA, researchers can now observe filling effects in the presence of geometrical 

configurations or environmental influences real-time and without requiring destructive 

adjustments to the device. 

 

7.3. Limitations of the Study Protocol 

The biplane DSA image sequence provided valuable insight into the fluid dynamics of 

the artificial lung device and easily captured the fluid perfusion at volumetric flow rates up to 4.5 

L/min.  Although propagation through the fiber bundle at the highest flow rate lasted for 

approximately 10 frames, higher temporal response would improve flow field resolution allowing 

more accurate characterization of the perfusion behavior and minimize errors in tracking 

algorithms.  

Image distortions arising from a point-source X-ray beam may necessitate preprocessing 

modifications to the projection data set, although new flat-panel detectors and internal 

calibrations can help minimize such spatial errors.  Further, the oxygenator was placed in the 

center of the X-ray image field to reduce parallax between the biplane projections during the 

present studies.  Occasionally, alignment of biplane projections did require rotation of the image 

± 1–2° about the z-axis.  Based on known dimensions of the oxygenator, distortions were 

measured to be less than 8%, and therefore no adjustments were made to reshape the digital X-ray 

images. 
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Most calculations did employ a priori information of the flow field or make assumptions 

based on the annular shape of the oxygenator.  These were justified by noting a high level of 

symmetry between the biplane projections and assuming homogeneous contrast diffusion in the 

bulk fluid.  Although these assumptions were believed to be reasonable, parameters of the flow 

field could be better approximated using accompanying projections (e.g., additional rotational or 

through-plane projections).  Reducing the domain to a binary flow field minimized the 

complexity of the tracking algorithms, but may have contributed to greater error in the 

calculations. 

The MCC method has been shown to be a reliable tool for measuring fluid flow, but does 

possess a degree of subjectivity in regards to definitions of the template and search window sizes, 

and therefore requires complementary methods for validation.  Therefore, convergence tests were 

conducted to limit user biases.  Computationally, the cross-correlation technique utilizes a brute 

force method, so it is not largely efficient, and further, the MCC method is not invariant to image 

scaling or rotation, which may limit its functionality in other applications. 

Fiber bundle perfusion is typically perceived as laminar in nature29,30,37–42 due to previous 

estimates of low Reynolds numbers (Re < 10) through the fiber bundle at flow rates as high as 5 

L/min.30,73,140,141  Interestingly, Rei < 1.75 was calculated despite the observed non-linear 

permeability of the device.  This may be due to variations in flow uniformity or differences 

between parameters such as effective surface area. 

It is possible that errors exist in the CFD simulations due to the description of blood as a 

Newtonian fluid.  Newtonian approximations of blood do not include rheological properties such 

as blood’s shear-thinning nature or ability of RBCs to stack at low Re.142  Yet, with increasing 

shear rates (>100 s−1), blood behaves more consistently with Newtonian fluid characteristics due 

to the dispersion of rouleaux.136 

Both the bench circuit and the CFD study modeled blood as a Newtonian fluid which 

may not be representative of blood flow in clinical applications.  The aqueous-glycerin solutions 
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are suitable for Newtonian approximations, but alternative mixtures would display the non-

Newtonian, shear-thinning properties of blood.  Yet, since the calculated shear rate was greater 

than 100 s−1 for all study flow rates, a Newtonian approximation was assumed.  Further, CFD 

simulations were defined assuming the fluid was experiencing laminar flow according to the 

calculated Rei.  However, due to the redirection of flow from the inlet tube, the first few layers of 

the fiber bundle may not be strictly laminar in nature, and more accurate predictions may be 

achieved from using turbulence models.143 

Still, the results from this study do not characterize the full measure of fluid velocity, 

since neither DSA acquisitions nor CFD porous media approximations attempt to resolve the 

actual fibers.  Since, Ut cannot be experimentally determined or simulated within the parameters 

of this study, the true velocity of the fluid will likely be higher than the physical velocity by some 

factor, say τ. 

Finally, permeability calculations based on acquired pressure measurements may be 

subject to inaccuracies due to the limitation in accessing pre-fiber pressure drop.  It is likely that 

the significance of this error will be greater at higher flow rates, which may explain the deviation 

between numerical and experimental pressure drop the 4.5 L/min flow rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Cameron C. Jones 2012  
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8. SUMMARY AND CONCLUDING REMARKS 
 
 
 
 
 
 
 
The development of a gas exchange device suitable for long-term respiratory support must 

balance both biocompatibility and functional design parameters. The dichotomous relationship 

between factors such as the inflammatory response elicited by a foreign surface versus the 

performance capacity of the device, and shear-induced platelet activation/cell damage versus low-

shear and stagnant areas prone to thrombosis, summarize the delicate balance among a multitude 

of competing factors.  Numerical techniques allow efficient optimization of these variables, and 

validated CFD analyses offer detailed information to complement clinical and experimental 

understanding. 

The accuracy of CFD models is ultimately limited by the strength of the underlying 

approximations and assumptions incorporated into the governing equations of fluid flow.  

Although many design strategies have been tested over the years, most studies confer accuracy 

based on comparison of numerical and experimental pressure distributions alone, since direct 

observation of the perfusion dynamics is difficult to accomplish in opaque systems.  In fact, to 

this author’s knowledge, the numerical velocity field has never been validated in membranous 

artificial organs, including kidney hemodialyzers. 

Using a clinical X-ray DSA system, details of flow perfusion inside a membrane artificial 

lung provided quantitative measurements useful for verification of the numerical velocity field.  

Based on the results of this research, it was shown that when using conventional methods for 

modeling blood flow through the fiber membrane, despite satisfactory assessments of numerical 

pressure losses, velocity predictions were significantly lower than experimentally measured.  

Following a direct comparison between the numerical and experimental values, the incorporation 

of the resulting scaling constant significantly improved the CFD results. 
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The validity of the porous media approach remains qualitative in the context of the 

problem considered in this work; although no other practical approach currently exists.  Results 

of this study suggest the need for experimental validation of flow characteristics which may play 

a significant role in mass transfer calculations in fiber bundles, assessment of local shear stresses, 

or designs of the housing geometry.  In particular, velocity fields are needed in addition to 

pressure distributions.  Future efforts will need to address improvements to the computational 

models, but with the aid of X-ray imaging, internal flow dynamics can be evaluated real-time, 

non-invasively, and with good spatial resolution.  The methods developed here will provide 

researchers tools for more accurate assessments of fluid flow through membrane oxygenators and 

a clearer understanding of device performance in new prototype designs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Cameron C. Jones 2012  
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APPENDIX A: NOTATION 

a, b coefficients, — 

A surface area, m2 

A cross-sectional area, m2 

Av wetted surface area, m2 

c velocity magnitude, pixels/s 

C MCC cross-correlation matrix 

do fiber outer diameter, m 

dp equivalent spherical diameter, m 

dp'  experimental equivalent spherical diameter, m 

D contrast density 

𝒟 diffusivity coefficient, m2/s 

e dominant error from finite numerical approximations, — 

EtCO2 end-tidal CO2, mmHg 

f, f, f* grid function, — 

FB N.–S. momentum body force term 

h step size (grid spacing) 

i summation or discretization index, i = (1, 2, …, n) 

i principle direction, i = (1, 2, 3)T 

I MCC search window 

I ̅ average of the MCC search window 

k permeability, m2 

L fiber thickness, m 

Le mean effective length, m 

m index, m = (1, 2, …, N) 

M array size, pixels 

n, N upper limit 

p pressure, kg/m s 

p* pressure, — 
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P barometric pressure, mmHg 

PO2  oxygen partial pressure, mmHg 

qm order of the discretization method 

Q flow rate, L/min 

Qb blood flow rate, L/min 

Qg sweep gas flow rate, mL/min 

r grid refinement ratio, — 

rh hydraulic radius, m 

Re Reynolds number, — 

Rei interstitial Reynolds number, — 

S N.–S. momentum source term 

SO2 oxyhemoglobin saturation, mmHg 

t time, s 

tR average residence time, s 

tR' peak-to-peak residence time, s 

tHb hemoglobin concentration, g/dL 

T MCC template 

T� average template value 

TI peak intensity of entrance flow, s 

TN peak intensity of exit flow, s 

u, u velocity, m/s 

u* velocity, — 

umax maximum velocity magnitude, m/s 

U superficial velocity, m/s 

U′ experimental superficial velocity, m/s 

Uinlet inlet superficial velocity, m/s 

U�p average physical velocity, m/s 

U�p' average physical velocity from time-density analysis, m/s 

U�p''  average physical velocity imposing a uniform distribution, m/s 
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Ut tortuous velocity, m/s 

v distance, pixels 

V̇ rate of gas transfer, mL/min 

V̇CO2 rate of CO2 transfer, mL/min 

V̇O2 rate of O2 transfer, mL/min 

Vs solid volume fraction, m3 

Vt total volume, m3 

Vv void volume fraction, m3 

w distance, pixels 

x distance, m 

x, y, z Cartesian coordinates 

 

Greek Symbols 

α coefficient of viscous energy losses, — 

αO2  oxygen solubility coefficient in blood, mL/dL/mmHg 

β coefficient of kinetic energy losses, — 

𝛾̇ shear rate, s−1 

ε void space (porosity), — 

εeff effective void space (porosity), — 

θ angle 

μ dynamic viscosity, kg/m s 

λO2  hemoglobin binding capacity to oxygen, mL/g 

ρ density, kg/m3 

τ hydraulic tortuosity, — 

𝜏̅ root-mean-squared average shear stress, dyne/cm2 

τm truncation error, m = (1, 2, …, N) 

𝜔 empirical correction factor, — 
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APPENDIX B: ABBREVIATIONS 

Mathematical operators, common units and variables, and infrequently used molecules or 

compounds have not been included. 

ARDS Acute Respiratory Distress Syndrome 

CAD Computer Aided Design 

CFD Computational Fluid Dynamics 

COPD Chronic Obstructive Pulmonary Disease 

CO2 Carbon Dioxide 

CPB Cardiopulmonary Bypass 

CT Computed Tomography 

CTA Constant Temperature Anemometry 

DICOM Digital Imaging and Communications in Medicine 

DSA Digital Subtraction Angiography 

ECMO Extracorporeal Membrane Oxygenation 

EM Electromagnetic (radiation) 

FLASH Fast Low Angle SHot (MRI) 

FOV Field of View 

fps frames per second 

Hb Hemoglobin 

MCC Maximum Cross Correlation 

MRI Magnetic Resonance Imaging 

N.–S. Navier–Stokes 

O2 Oxygen 

OD Outside (or Outer) Diameter 

PC Phase Contrast 

PDE Partial Differential Equation 

PE Photoelectric (effect) 

PIV Particle Image Velocimetry 
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PMP Polymethylpentene 

pps pixels per side 

PTV Particle Tracking Velocimetry 

RBC Red Blood Cell 

ROI Region of Interest 

SNR Signal to Noise Ratio 
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APPENDIX C: PSEUDO-LANGUAGE ALGORITHMS 

Pseudo-Language Variables 
boxsz Template box dimensions 
corrlim Cross-correlation threshold limit 

errvect 
Error vector properties (i.e., wrong direction, greater than local standard 
deviations, etc.) 

frames Set of projection images 
gridsz Spatial discretization of grid points 
imdim Image dimensions 
img(–,a,b) Projection image (possible designation of specific biplane projection) 
N Loop counter 
NCC Normalized cross-correlation matrix 
nodes Vertices for spline construction 

nx 
Normal direction of a point (i.e., inward or outward); default is positive 
(inward) 

pcloud 3-D point cloud; includes xyz-coordinates and normal direction 
spline 2-D quasi-circular spline in z-plane 
splineres Spline resolution (number of points) 
tBox Template box 
thresh Background gray-level intensity 
tWin Search window 
winsz Search window dimensions 
 
Pseudo-Language Functions and Operations 
% Comment indicator 
: Range 
[] Omit, or remove value 
[·] Function parentheses 
(·) Contents, or subset of 
boundary Traces the boundary of a defined region (e.g., contrast bolus) 
count Count contents 
crop Remove matrix elements 
if, else Conditional statements 
max Maximum value 
rotate Rotate image 
run Execute, or evaluate 
search Search within domain(s) on which to evaluate a function 
smooth Spatial smoothing (i.e., median filter, hole filling, etc.) 
spline2d Execute 2-D cubic-spline interpolation 
stdev Standard deviation 
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C.1. Image Pre-Processing Subroutine 

1. Input frames, imdim, thresh 

2. Begin iteration of frames, N 

3. Image pre-processing 

img = rotate(img)  % image alignment 

img = crop(img)   % remove known geometry 

 

if, img(:,:) > thresh  % binary image conversion 

 img(:,:) = 1 

else, img(:,:) = 0 

 

img = smooth(img) 

 

4. [Enter Functions] 

5. Repeat N 

6. End N 
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C.2. Maximum Cross-Correlation 

1. Input corrlim, errvect, gridsz, boxsz, winsz 

2. Run C.1. 

3. Calculate cross-correlation for each grid point 

if, tBox(:,:) = boxsz % no calculations for a uniform 

template pattern 

else, NCC = search(tBox, tWin) % get max correlation 

 if, NCC(:,:) < corrlim, end 

4. Refine NCC vectors 

if, NCC(u,v) = errvect  % sans standard deviation 

NCC(u,v) = [] 

5. Only keep highest cross correlation for each grid point 

NCC(N) = max(NCC(1:N))  

6. Conduct filtering of final vector field 

if, NCC(:,:) = errvect(stdev) 

 NCC(u,v) = [] 

7. Convert units: pixel/frame to mm/s 
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C.3. Point Cloud Reconstruction 

1. Input splineres 

2. Run C.1. 

3. Identify outer edge of contrast perfusion 

imga = boundary(imga) 

imgb = boundary(imgb) 

smooth(imga, imgb) % ensure continuous boundary (i.e., no 

holes) 

nodes = count(imga, imgb) % repeat for each row/slice 

4. Refine nodes 

if, nodes = 4 ∨ 12 % a slice must contain exactly 4 or 12 

nodes; at least 2 from each img 

   if, [nodes = 4] ∧ [count(imga) = 2] 

   else, nodes = [] 

else, nodes = [] 

5. Create 2-D spline for each slice 

spline = spline2d(nodes, splineres) 

6. Export point cloud for volumetric reconstruction 

pcloud = (nodes, slice, nx) % contains xyz-coordinates, and 

normal direction 

if, nodes = 4 

else,  

plcoud((2, 5, 8, 11),nx) = −nx % outward normal 

(relative to inlet tube) 
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